Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Toxics ; 12(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38787128

ABSTRACT

The recent availability of commercial platforms for behavioral analyses in zebrafish larvae based on video-tracking technologies has exponentially increased the number of studies analyzing different behaviors in this model organism to assess neurotoxicity. Among the most commonly used assays in zebrafish larvae are basal locomotor activity (BLA) and visual motor responses (VMRs). However, the effect of different intrinsic and extrinsic factors that can significantly alter the outcome of these assays is still not well understood. In this work, we have analyzed the influence of age (5-8 days post-fertilization), time of day (8:00, 10:00, 12:00, 14:00; 16:00, 18:00, and 20:00 h), and experiment (three experiments performed at different days) on BLA and VMR results (4004 analyses for each behavior) in 143 larvae. The results from both behaviors were adjusted to a random-effects linear regression model using generalized least squares (GLSs), including in the model the effect of the three variables, the second-way interactions between them, and the three-way interaction. The results presented in this manuscript show a specific effect of all three intrinsic factors and their interactions on both behaviors, supporting the view that the most stable time period for performing these behavioral assays is from 10:00 am to 04:00 pm, with some differences depending on the age of the larva and the behavioral test.

2.
Chemosphere ; 355: 141851, 2024 May.
Article in English | MEDLINE | ID: mdl-38579950

ABSTRACT

Fish have common neurotransmitter pathways with humans, exhibiting a significant degree of conservation and homology. Thus, exposure to fluoxetine makes fish potentially susceptible to biochemical and physiological changes, similarly to what is observed in humans. Over the years, several studies demonstrated the potential effects of fluoxetine on different fish species and at different levels of biological organization. However, the effects of parental exposure to unexposed offspring remain largely unknown. The consequences of 15-day parental exposure to relevant concentrations of fluoxetine (100 and 1000 ng/L) were assessed on offspring using zebrafish as a model organism. Parental exposure resulted in offspring early hatching, non-inflation of the swimming bladder, increased malformation frequency, decreased heart rate and blood flow, and reduced growth. Additionally, a significant behavioral impairment was also found (reduced startle response, basal locomotor activity, and altered non-associative learning during early stages and a negative geotaxis and scototaxis, reduced thigmotaxis, and anti-social behavior at later life stages). These behavior alterations are consistent with decreased anxiety, a significant increase in the expression of the monoaminergic genes slc6a4a (sert), slc6a3 (dat), slc18a2 (vmat2), mao, tph1a, and th2, and altered levels of monoaminergic neurotransmitters. Alterations in behavior, expression of monoaminergic genes, and neurotransmitter levels persisted until offspring adulthood. Given the high conservation of neuronal pathways between fish and humans, data show the possibility of potential transgenerational and multigenerational effects of pharmaceuticals' exposure. These results reinforce the need for transgenerational and multigenerational studies in fish, under realistic scenarios, to provide realistic insights into the impact of these pharmaceuticals.


Subject(s)
Perciformes , Water Pollutants, Chemical , Animals , Humans , Adult , Zebrafish/metabolism , Fluoxetine/pharmacology , Larva , Antidepressive Agents/pharmacology , Perciformes/metabolism , Neurotransmitter Agents/metabolism , Pharmaceutical Preparations/metabolism , Water Pollutants, Chemical/metabolism
3.
Environ Pollut ; 347: 123685, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38460591

ABSTRACT

Boscalid (2-Chloro-N-(4'-chlorobiphenyl-2-yl) nicotinamide), a pyridine carboxamide fungicide, is an inhibitor of the complex II of the respiration chain in fungal mitochondria. As boscalid is only moderately toxic for aquatic organisms (LC50 > 1-10 mg/L), current environmental levels of this compound in aquatic ecosystems, in the range of ng/L-µg/L, are considered safe for aquatic organisms. In this study, we have exposed zebrafish (Danio rerio), Japanese medaka (Oryzias latipes) and Daphnia magna to a range of concentrations of boscalid (1-1000 µg/L) for 24 h, and the effects on heart rate (HR), basal locomotor activity (BLA), visual motor response (VMR), startle response (SR), and habituation (HB) to a series of vibrational or light stimuli have been evaluated. Moreover, changes in the profile of the main neurotransmitters have been determined. Boscalid altered HR in a concentration-dependent manner, leading to a positive or negative chronotropic effect in fish and D. magna, respectively. While boscalid decreased BLA and increased VMR in Daphnia, these behaviors were not altered in fish. For SR and HB, the response was more species- and concentration-specific, with Daphnia exhibiting the highest sensitivity. At the neurotransmission level, boscalid exposure decreased the levels of L-aspartic acid in fish larvae and increased the levels of dopaminergic metabolites in D. magna. Our study demonstrates that exposure to environmental levels of boscalid alters cardiac activity, impairs ecologically relevant behaviors, and leads to changes in different neurotransmitter systems in phylogenetically distinct vertebrate and invertebrate models. Thus, the results presented emphasize the need to review the current regulation of this fungicide.


Subject(s)
Biphenyl Compounds , Fungicides, Industrial , Niacinamide/analogs & derivatives , Water Pollutants, Chemical , Animals , Fungicides, Industrial/metabolism , Ecosystem , Aquatic Organisms , Zebrafish/metabolism , Daphnia , Niacinamide/toxicity , Water Pollutants, Chemical/metabolism
4.
Sci Total Environ ; 912: 169301, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38103609

ABSTRACT

The current view is that environmental levels of nicotine and cotinine, commonly in the ng/L range, are safe for aquatic organisms. In this study, 7 days post-fertilization zebrafish embryos have been exposed for 24 h to a range of environmental concentrations of nicotine (2.0 ng/L-2.5 µg/L) and cotinine (50 pg/L-10 µg/L), as well as to a binary mixture of these emerging pollutants. Nicotine exposure led to hyperactivity, decreased vibrational startle response and increased non-associative learning. However, the more consistent effect found for both nicotine and cotinine was a significant increase in light-off visual motor response (VMR). The effect of both pollutants on this behavior occurred through a similar mode of action, as the joint effects of the binary mixture of both chemicals were consistent with the concentration addition concept predictions. The results from docking studies suggest that the effect of nicotine and cotinine on light-off VMR could be mediated by zebrafish α7 nAChR expressed in retina. The results presented in this study emphasize the need to revisit the environmental risk assessment of chemicals including additional ecologically relevant sublethal endpoints.


Subject(s)
Environmental Pollutants , Nicotine , Animals , Nicotine/toxicity , Cotinine , Zebrafish , Larva
5.
Ecotoxicol Environ Saf ; 270: 115888, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38150752

ABSTRACT

Glyphosate, a globally prevalent herbicide known for its selective inhibition of the shikimate pathway in plants, is now implicated in physiological effects on humans and animals, probably due to its impacts in their gut microbiomes which possess the shikimate pathway. In this study, we investigate the effects of environmentally relevant concentrations of glyphosate on the gut microbiota, neurotransmitter levels, and anxiety in zebrafish. Our findings demonstrate that glyphosate exposure leads to dysbiosis in the zebrafish gut, alterations in central and peripheral serotonin levels, increased dopamine levels in the brain, and notable changes in anxiety and social behavior. While the dysbiosis can be attributed to glyphosate's antimicrobial properties, the observed effects on neurotransmitter levels leading to the reported induction of oxidative stress in the brain indicate a novel and significant mode of action for glyphosate, namely the impairment of the microbiome-gut-axis. While further investigations are necessary to determine the relevance of this mechanism in humans, our findings shed light on the potential explanation for the contradictory reports on the safety of glyphosate for consumers.


Subject(s)
Glyphosate , Herbicides , Humans , Animals , Zebrafish/metabolism , Glycine/toxicity , Dysbiosis/chemically induced , Shikimic Acid/metabolism , Herbicides/toxicity , Neurotransmitter Agents
6.
MethodsX ; 12: 102492, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38089153

ABSTRACT

Zebrafish larvae are a model organism increasingly used in the study of the effect of neuroactive chemicals on vertebrate sleep/wake cycles. Sleep disturbances have a negative impact on mood, cognition and overall health. Here we present a protocol to assess over 24 h sleep/wake cycles in zebrafish larvae subjected to 12 h light/dark periods in 48-well plates, using video-tracking technologies. The protocol can be used to determine if the exposure to environmental pollutants or drugs can lead to sleep disturbances. The results on the effect of the tire rubber-derived 6PPD-quinone on zebrafish sleep/wake cycles presented here demonstrate the suitability of using this protocol in fish neurotoxicity studies. This protocol provides a new relevant tool to be used in the pharmacology and toxicology fields.

7.
J Vis Exp ; (201)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37982528

ABSTRACT

The presence of neuropathological effects proved to be, for many years, the main endpoint for assessing the neurotoxicity of a chemical substance. However, in the last 50 years, the effects of chemicals on the behavior of model species have been actively investigated. Progressively, behavioral endpoints were incorporated into neurotoxicological screening protocols, and these functional outcomes are now routinely used to identify and determine the potential neurotoxicity of chemicals. Behavioral assays in adult zebrafish provide a standardized and reliable means to study a wide range of behaviors, including anxiety, social interaction, learning, memory, and addiction. Behavioral assays in adult zebrafish typically involve placing the fish in an experimental arena and recording and analyzing their behavior using video tracking software. Fish can be exposed to various stimuli, and their behavior can be quantified using a variety of metrics. The novel tank test is one of the most accepted and widely used tests to study anxiety-like behavior in fish. The shoaling and social preference tests are useful in studying the social behavior of zebrafish. This assay is particularly interesting since the behavior of the entire shoal is studied. These assays have proven to be highly reproducible and sensitive to pharmacological and genetic manipulations, making them valuable tools for studying the neural circuits and molecular mechanisms underlying behavior. Additionally, these assays can be used in drug screening to identify compounds that may be potential modulators of behavior. We will show in this work how to apply behavioral tools in fish neurotoxicology, analyzing the effect of methamphetamine, a recreational drug, and glyphosate, an environmental pollutant. The results demonstrate the significant contribution of behavioral assays in adult zebrafish to the understanding of the neurotoxicological effects of environmental pollutants and drugs, in addition to providing insights into the molecular mechanisms that may alter neuronal function.


Subject(s)
Behavior, Animal , Zebrafish , Animals , Zebrafish/physiology , Behavior, Animal/physiology , Behavior Rating Scale , Social Behavior , Anxiety/chemically induced
8.
Chemosphere ; 345: 140468, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37852383

ABSTRACT

Fluoxetine is widely prescribed for the treatment of depressive states, acting at the level of the central nervous system, consequently affecting non-target organisms. This study aimed to investigate the influence of environmentally relevant fluoxetine concentrations (1-1000 ng/L) on Danio rerio development, assessing both embryotoxicity and behavior, antioxidant defense, gene expression and neurotransmitter levels at larval stage. Exposure to fluoxetine during early development was found to be able to accelerate embryo hatching in embryos exposed to 1, 10 and 100 ng/L, reduce larval size in 1000 ng/L, and increase heart rate in 10, 100 and 1000 ng/L exposed larvae. Behavioral impairments (decreased startle response and increased larvae locomotor activity) were associated with effects on monoaminergic systems, detected through the downregulation of key genes (vmat2, mao, tph1a and th2). In addition, altered levels of neurochemicals belonging to the serotonergic and dopaminergic systems (increased levels of tryptophan and norepinephrine) highlighted the sensitivity of early life stages of zebrafish to low concentrations of fluoxetine, inducing effects that may compromise larval survival. The obtained data support the necessity to test low concentrations of SSRIs in environmental risk assessment and the use of biomarkers at different levels of biological organization for a better understanding of modes of action.


Subject(s)
Fluoxetine , Water Pollutants, Chemical , Animals , Fluoxetine/pharmacology , Zebrafish/metabolism , Larva , Selective Serotonin Reuptake Inhibitors/toxicity , Behavior, Animal , Water Pollutants, Chemical/metabolism , Embryo, Nonmammalian
9.
Sci Total Environ ; 896: 165240, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37406704

ABSTRACT

N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-quinone) is a degradation product of 6PPD, an antioxidant widely used in rubber tires. 6PPD-quinone enters aquatic ecosystems through urban stormwater runoff and has been identified as the chemical behind the urban runoff mortality syndrome in coho salmon. However, the available data suggest that the acute effects of 6PPD-quinone are restricted to a few salmonid species and that the environmental levels of this chemical should be safe for most fish. In this study, larvae of a "tolerant" fish species, Danio rerio, were exposed to three environmental concentrations of 6PPD-quinone for only 24 h, and the effects on exploratory behavior, escape response, nonassociative learning (habituation), neurotransmitter profile, wake/sleep cycle, circadian rhythm, heart rate and oxygen consumption rate were analyzed. Exposure to the two lowest concentrations of 6PPD-quinone resulted in altered exploratory behavior and habituation, an effect consistent with some of the observed changes in the neurotransmitter profile, including increased levels of acetylcholine, norepinephrine, epinephrine and serotonin. Moreover, exposure to the highest concentration tested altered the wake/sleep cycle and the expression of per1a, per3 and cry3a, circadian clock genes involved in the negative feedback loop. Finally, a positive chronotropic effect of 6PPD-quinone was observed in the hearts of the exposed fish. The results of this study emphasize the need for further studies analyzing the effects of 6PPD-quinone in "tolerant" fish species.


Subject(s)
Benzoquinones , Central Nervous System , Environmental Exposure , Phenylenediamines , Rubber , Water Pollutants, Chemical , Zebrafish , Animals , Benzoquinones/analysis , Benzoquinones/toxicity , Central Nervous System/drug effects , Central Nervous System/physiology , Ecosystem , Larva/drug effects , Larva/metabolism , Phenylenediamines/analysis , Phenylenediamines/toxicity , Rubber/chemistry , Rubber/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Zebrafish/genetics , Zebrafish/growth & development , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
10.
Sci Total Environ ; 865: 161268, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36592917

ABSTRACT

Carbaryl and fenitrothion are two insecticides sharing a common mode of action, the inhibition of the acetylcholinesterase (AChE) activity. Their use is now regulated or banned in different countries, and the environmental levels of both compounds in aquatic ecosystems have decreased to the range of pg/L to ng/L. As these concentrations are below the non-observed-adverse-effect-concentrations (NOAEC) for AChE inhibition reported for both compounds in aquatic organisms, there is a general agreement that the current levels of these two chemicals are safe for aquatic organisms. In this study we have exposed zebrafish, Japanese medaka and Daphnia magna to concentrations of carbaryl and fenitrothion under their NOAECs for 24-h, and the effects on heart rate (HR), basal locomotor activity (BLA), visual motor response (VMR), startle response (SR) and its habituation have been evaluated. Both pesticides increased the HR in the three selected model organisms, although the intensity of this effect was chemical-, concentration- and organism-dependent. The exposure to both pesticides also led to a decrease in BLA and an increase in VMR in all three species, although this effect was only significant in zebrafish larvae. For SR and its habituation, the response profile was more species- and concentration-specific. The results presented in this manuscript demonstrate that concentrations of carbaryl and fenitrothion well below their respective NOAECs induce tachycardia and the impairment of ecologically relevant behaviors in phylogenetically distinct aquatic model organisms, both vertebrates and invertebrates, emphasizing the need to include this range of concentrations in the environmental risk assessment.


Subject(s)
Insecticides , Pesticides , Water Pollutants, Chemical , Animals , Carbaryl/toxicity , Fenitrothion/toxicity , Zebrafish , Cholinesterase Inhibitors/toxicity , Acetylcholinesterase , Heart Rate , Aquatic Organisms , Ecosystem , Insecticides/analysis , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
11.
Front Physiol ; 13: 1040598, 2022.
Article in English | MEDLINE | ID: mdl-36467683

ABSTRACT

The number of people suffering from mental health problems is rising, with anxiety and depression now the most commonly diagnosed psychiatric conditions. Selective serotonin reuptake inhibitors (SSRIs) are one of the most prescribed pharmaceuticals to treat these conditions, which has led to their common detection in many aquatic ecosystems. As the monoaminergic system shows a high degree of structural conservation across diverse animal phyla, a reasonable assumption is that the environmental levels of SSRIs in surface water can lead to adverse effects on fish and other aquatic wildlife. For instance, Sertraline (SER), a widely prescribed SSRI, has been shown to induce adverse effects in fish, albeit most of the reports used exposure concentrations exceeding those occurring in natural environments. Therefore, there is still a great lack of knowledge regarding SERs effects in fish species, especially during early life stages. This study describes the evaluation of developmental exposure of zebrafish (Danio rerio) to environmentally relevant concentrations of SER (from 0.01 to 10 µg/L), using a battery of key survival behaviors and further relating them with the expression of genes and neurochemical profiles of the monoaminergic system. We found that developmental exposure to SER did not affect embryo morphogenesis and growth. However, concentrations as low as 0.1 µg/L induced hypolocomotion and delayed learning. The observed behavioral impairment was associated with augmented serotonin levels rather than other neurochemicals and molecular markers, highlighting the relationship between serotonin signaling and behavior in zebrafish.

12.
iScience ; 25(10): 105128, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36185381

ABSTRACT

Adrenoceptors are G protein-coupled receptors involved in a large variety of physiological processes, also under pathological conditions. This is due in large part to their ubiquitous expression in the body exerting numerous essential functions. Therefore, the possibility to control their activity with high spatial and temporal precision would constitute a valuable research tool. In this study, we present a caged version of the approved non-selective ß-adrenoceptor antagonist carvedilol, synthesized by alkylation of its secondary amine with a coumarin derivative. Introducing this photo-removable group abolished carvedilol physiological effects in cell cultures, mouse isolated perfused hearts and living zebrafish larvae. Only after visible light application, carvedilol was released and the different physiological systems were pharmacologically modulated in a similar manner as the control drug. This research provides a new photopharmacological tool for a wide range of research applications that may help in the development of future precise therapies.

13.
Angew Chem Int Ed Engl ; 61(30): e202203449, 2022 07 25.
Article in English | MEDLINE | ID: mdl-35608051

ABSTRACT

Catecholamine-triggered ß-adrenoceptor (ß-AR) signaling is essential for the correct functioning of the heart. Although both ß1 - and ß2 -AR subtypes are expressed in cardiomyocytes, drugs selectively targeting ß1 -AR have proven this receptor as the main target for the therapeutic effects of beta blockers in the heart. Here, we report a new strategy for the light-control of ß1 -AR activation by means of photoswitchable drugs with a high level of ß1 -/ß2 -AR selectivity. All reported molecules allow for an efficient real-time optical control of receptor function in vitro. Moreover, using confocal microscopy we demonstrate that the binding of our best hit, pAzo-2, can be reversibly photocontrolled. Strikingly, pAzo-2 also enables a dynamic cardiac rhythm management on living zebrafish larvae using light, thus highlighting the therapeutic and research potential of the developed photoswitches. Overall, this work provides the first proof of precise control of the therapeutic target ß1 -AR in native environments using light.


Subject(s)
Receptors, Adrenergic, beta-2 , Zebrafish , Adrenergic beta-Antagonists/pharmacology , Animals , Ligands , Myocytes, Cardiac/metabolism , Receptors, Adrenergic, beta-2/metabolism , Zebrafish/metabolism
14.
J Hazard Mater ; 431: 128563, 2022 06 05.
Article in English | MEDLINE | ID: mdl-35248961

ABSTRACT

The insecticide carbaryl is commonly found in indirectly exposed freshwater ecosystems at low concentrations considered safe for fish communities. In this study, we showed that after only 24 h of exposure to environmental concentrations of carbaryl (0.066-660 ng/L), zebrafish larvae exhibit impairments in essential behaviours. Interestingly, the observed behavioural effects induced by carbaryl were acetylcholinesterase-independent. To elucidate the molecular initiating event that resulted in the observed behavioural effects, in silico predictions were followed by in vitro validation. We identified two target proteins that potentially interacted with carbaryl, the α2B adrenoceptor (ADRA2B) and the serotonin 2B receptor (HTR2B). Using a pharmacological approach, we then tested the hypothesis that carbaryl had antagonistic interactions with both receptors. Similar to yohimbine and SB204741, which are prototypic antagonists of ADRA2B and HTR2B, respectively, carbaryl increased the heart rate of zebrafish larvae. When we compared the behavioural effects of a 24-h exposure to these pharmacological antagonists with those of carbaryl, a high degree of similarity was found. These results strongly suggest that antagonism of both ADRA2B and HTR2B is the molecular initiating event that leads to adverse outcomes in zebrafish larvae that have undergone 24 h of exposure to environmentally relevant levels of carbaryl.


Subject(s)
Carbaryl , Zebrafish , Acetylcholinesterase , Animals , Carbaryl/toxicity , Ecosystem , Larva
15.
J Med Chem ; 65(6): 4865-4877, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35235323

ABSTRACT

Heparin-like macromolecules are widely used in clinics as anticoagulant, antiviral, and anticancer drugs. However, the search of heparin antidotes based on small synthetic molecules to control blood coagulation still remains a challenging task due to the physicochemical properties of this anionic polysaccharide. Here, we use a dynamic combinatorial chemistry approach to optimize heparin binders with submicromolar affinity. The recognition of heparin by the most amplified members of the dynamic library has been studied with different experimental (SPR, fluorescence, NMR) and theoretical approaches, rendering a detailed interaction model. The enzymatic assays with selected library members confirm the correlation between the dynamic covalent screening and the in vitro heparin inhibition. Moreover, both ex vivo and in vivo blood coagulation assays with mice show that the optimized molecules are potent antidotes with potential use as heparin reversal drugs. Overall, these results underscore the power of dynamic combinatorial chemistry targeting complex and elusive biopolymers.


Subject(s)
Antidotes , Heparin , Animals , Anticoagulants/chemistry , Anticoagulants/pharmacology , Antidotes/pharmacology , Blood Coagulation , Heparin/chemistry , Mice , Polysaccharides
16.
Front Pharmacol ; 12: 770319, 2021.
Article in English | MEDLINE | ID: mdl-34880760

ABSTRACT

Hyperthermia is a common confounding factor for assessing the neurotoxic effects of methamphetamine (METH) in mammalian models. The development of new models of methamphetamine neurotoxicity using vertebrate poikilothermic animals should allow to overcome this problem. The aim of the present study was to develop a zebrafish model of neurotoxicity by binge-like methamphetamine exposure. After an initial testing at 20 and 40 mg/L for 48 h, the later METH concentration was selected for developing the model and the effects on the brain monoaminergic profile, locomotor, anxiety-like and social behaviors as well as on the expression of key genes of the catecholaminergic system were determined. A concentration- and time-dependent decrease in the brain levels of dopamine (DA), norepinephrine (NE) and serotonin (5-HT) was found in METH-exposed fish. A significant hyperactivity was found during the first hour of exposure, followed 3 h after by a positive geotaxis and negative scototaxis in the novel tank and in the light/dark paradigm, respectively. Moreover, the behavioral phenotype in the treated fish was consistent with social isolation. At transcriptional level, th1 and slc18a2 (vmat2) exhibited a significant increase after 3 h of exposure, whereas the expression of gfap, a marker of astroglial response to neuronal injury, was strongly increased after 48 h exposure. However, no evidences of oxidative stress were found in the brain of the treated fish. Altogether, this study demonstrates the suitability of the adult zebrafish as a model of METH-induced neurotoxicity and provides more information about the biochemical and behavioral consequences of METH abuse.

17.
Toxics ; 9(6)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070577

ABSTRACT

This study examines the effects of acute pharmacological modulation of the serotonergic system over zebrafish larvae's cognitive, basic, and defense locomotor behaviors, using a medium to high throughput screening assay. Furthermore, the relationship between behavior, enzyme activity related to neurotransmitter metabolism, neurotransmitter levels, and gene expression was also determined. Modulation of larvae serotonergic system was accomplished by 24 h exposure to single and opposite pharmacodynamics co-exposure to three model psychopharmaceuticals with antagonistic and agonistic serotonin signaling properties: 2.5 mM 4-Chloro-DL-phenylalanine (PCPA) and 5 µM deprenyl and 0.5 µM fluoxetine, respectively. Similar behavioral outcome was observed for deprenyl and fluoxetine, which was reflected as hypolocomotion, decrease in larvae defensive responses, and cognitive impairment. Contrarily, PCPA induced hyperlocomotion and increase in larvae escape response. Deprenyl exposure effects were more pronounced at a lower level of organization than fluoxetine, with complete inhibition of monoamine oxidase (MAO) activity, dramatic increase of 5-HT and dopamine (DA) levels, and downregulation of serotonin synthesis and transporter genes. PCPA showed mainly effects over serotonin and dopamine's main degradation metabolites. Finally, co-exposure between agonistic and antagonist serotonin signaling drugs reviled full recovery of zebrafish impaired locomotor and defense responses, 5-HT synthesis gene expression, and partial recovery of 5-HT levels. The findings of this study suggest that zebrafish larvae can be highly sensitive and a useful vertebrate model for short-term exposure to serotonin signaling changes.

18.
Sci Total Environ ; 775: 145671, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-33621872

ABSTRACT

Fenitrothion is an organophosphorus insecticide usually found in aquatic ecosystems at concentrations in the range of low ng/L. In this manuscript we show that 24 h exposure to environmental concentrations of fenitrothion, from ng/L to low µg/L, altered basal locomotor activity, visual-motor response and acoustic/vibrational escape response of zebrafish larvae. Furthermore, fenitrothion and expression of gap43a, gfap, atp2b1a, and mbp exhibited a significant non-monotonic concentration-response relationship. Once determined that environmental concentrations of fenitrothion were neurotoxic for zebrafish larvae, a computational analysis identified potential protein targets of this compound. Some of the predictions, including interactions with acetylcholinesterase, monoamine-oxidases and androgen receptor (AR), were experimentally validated. Binding to AR was the most suitable candidate for molecular initiating event, as indicated by both the up-regulation of cyp19a1b and sult2st3 and the non-monotonic relationship found between fenitrothion and the observed responses. Finally, when the integrity of the monoaminergic system was evaluated, altered levels of L-DOPA, DOPAC, HVA and 5-HIAA were found, as well as a significant up-regulation of slc18a2 expression at the lowest concentrations of fenitrothion. These data strongly suggest that concentrations of fenitrothion commonly found in aquatic ecosystems present a significant environmental risk for fish communities.


Subject(s)
Fenitrothion , Insecticides , Androgens , Animals , Ecosystem , Fenitrothion/toxicity , Insecticides/toxicity , Larva , Zebrafish
19.
Environ Int ; 146: 106253, 2021 01.
Article in English | MEDLINE | ID: mdl-33220538

ABSTRACT

Glyphosate is the active ingredient of some of the most highly produced and used herbicides worldwide. The intensive applications of glyphosate-based herbicides and its half-life in water lead to its presence in many aquatic ecosystems. Whereas recent studies have reported neurotoxic effects of glyphosate including autism-related effects, most of them used extremely high (mg/L to g/L) concentrations, so it is still unclear if chronic, low environmentally relevant concentrations of this compound (ng/L to µg/L) can induce neurotoxicity. In this study we analyzed the neurotoxicity of glyphosate in adult zebrafish after waterborne exposure to environmentally relevant concentrations (0.3 and 3 µg/L) for two weeks. Our data showed that exposed fish presented a significant impairment of exploratory and social behaviors consistent with increased anxiety. The anterior brain of the exposed fish presented a significant increase in dopamine and serotonin levels, as well as in the DOPAC/dopamine and homovanillic acid/dopamine turnover ratios. Moreover, the expression of genes involved in the dopaminergic system, as th1, th2, comtb, and scl6a3 was downregulated. Finally, the brain of exposed fish presented a significant increase in the catalase and superoxide dismutase activities, with a concomitant decrease of glutathione stores. These changes in the antioxidant defense system are consistent with the observed increase in oxidative stress, reflected by the increase in the levels of lipid peroxidation in the brain. The presented results show that current glyphosate concentrations commonly found in many aquatic ecosystems may have detrimental consequences on fish survival by decreasing exploration of the environment or altering social interactions. Furthermore, as zebrafish is also a vertebrate model widely used in human neurobehavioral studies, these results are relevant not only for environmental risk assessment, but also for understanding the risk of chronic low-dose exposures on human health.


Subject(s)
Herbicides , Water Pollutants, Chemical , Animals , Anxiety/chemically induced , Ecosystem , Glycine/analogs & derivatives , Herbicides/toxicity , Humans , Oxidative Stress , Water Pollutants, Chemical/toxicity , Zebrafish , Glyphosate
20.
Sci Total Environ ; 745: 141205, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-32758735

ABSTRACT

Monoaminergic neurotransmitters are the main components that regulate of a lot of processes in the vertebrate brain. There is growing interest to monitor the changes produced in these neurochemicals due to the large number of exogenous agents, such as pharmaceuticals and drugs of abuse, targeting and affecting this system. Adult zebrafish (Danio rerio) shares the common neurotransmitter pathways and nervous system organization with mammals. Therefore, a method based on liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) has been developed for the first time to study the profile of ten monoaminergic neurochemicals in the anterior, middle and posterior brain regions of adult zebrafish. Moreover, the applied LC-MS/MS method has been studied in terms of quality such as linearity, sensitivity and intra- and inter-day precision. The analytical method based in LC-MS/MS has become a new source in neurotoxicology using adult zebrafish as research model. Significant differences on the levels of these neurotransmitters have been found between the different brain regions. CAPSULE: The profile of ten monoaminergic neurochemicals in the main three brain areas of adult zebrafish has been reported for the first time in this manuscript.


Subject(s)
Tandem Mass Spectrometry , Zebrafish , Animals , Brain , Chromatography, High Pressure Liquid , Chromatography, Liquid , Neurotransmitter Agents , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL