Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters











Publication year range
1.
Sci Total Environ ; 814: 152742, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-34974014

ABSTRACT

Methanotrophs are the main consumers of methane produced in lake sediments. In shallow lakes suffering from eutrophication, methanogenesis is accelerated by the excess organic carbon input, and thus methanotrophs play a key role in regulating this methane flux as well as carbon cycling. Here, we applied nucleic acid stable isotope probing (SIP) to investigate the active methanotrophic microbial community in sediments of several shallow lakes affected by eutrophication. Our results showed that an active methanotrophic community dominated by gamma-proteobacterial methanotrophs, as well as abundant beta-proteobacterial methanol-utilizers, was involved in methane-derived carbon assimilation. Crenothrix, a filamentous methanotroph, was found to be a key methane consumer in all studied lakes. The ecological role of Crenothrix in lacustrine ecosystems is so far poorly understood, with only limited information on its existence in the water column of stratified lakes. Our results provide a novel ecological insight into this group by revealing a wide distribution of Crenothrix in lake sediments. The active methane assimilation by Crenothrix also suggested that it might represent a so far overlooked but crucial biological sink of methane in shallow lakes.


Subject(s)
Lakes , Microbiota , DNA , Geologic Sediments , Isotopes , Methane , Oxidation-Reduction , Phylogeny
2.
Environ Sci Technol ; 55(24): 16538-16551, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34882392

ABSTRACT

Prymnesium parvum is a toxin-producing microalga, which causes harmful algal blooms globally, frequently leading to massive fish kills that have adverse ecological and economic implications for natural waterways and aquaculture alike. The dramatic effects observed on fish are thought to be due to algal polyether toxins, known as the prymnesins, but their lack of environmental detection has resulted in an uncertainty about the true ichthyotoxic agents. Using qPCR, we found elevated levels of P. parvum and its lytic virus, PpDNAV-BW1, in a fish-killing bloom on the Norfolk Broads, United Kingdom, in March 2015. We also detected, for the first time, the B-type prymnesin toxins in Broads waterway samples and gill tissue isolated from a dead fish taken from the study site. Furthermore, Norfolk Broads P. parvum isolates unambiguously produced B-type toxins in laboratory-grown cultures. A 2 year longitudinal study of the Broads study site showed P. parvum blooms to be correlated with increased temperature and that PpDNAV plays a significant role in P. parvum bloom demise. Finally, we used a field trial to show that treatment with low doses of hydrogen peroxide represents an effective strategy to mitigate blooms of P. parvum in enclosed water bodies.


Subject(s)
Haptophyta , Animals , Fishes , Harmful Algal Bloom , Longitudinal Studies , United Kingdom
3.
Microbiol Resour Announc ; 10(7)2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33602737

ABSTRACT

Characterizing the microbiome of spacecraft assembly cleanrooms is important for planetary protection. We report two bacterial metagenome-assembled genomes (MAGs) reconstructed from metagenomes produced from cleanroom samples from the Kennedy Space Center's Payload Hazardous Servicing Facility (KSC-PHSF) during the handling of the Phoenix spacecraft. Characterization of these MAGs will enable identification of the strategies underpinning their survival.

4.
Methods Mol Biol ; 2246: 291-299, 2021.
Article in English | MEDLINE | ID: mdl-33576997

ABSTRACT

Fluorescent in situ hybridization (FISH) on environmental samples has become a standard technique to identify and enumerate microbial populations. However, visualization and quantification of cells in environmental samples with complex matrices is often challenging to impossible, and downstream protocols might also require the absence of organic and inorganic particles for analysis. Therefore, quite often microbial cells have to be detached and extracted from the sample matrix prior to use in FISH. Here, details are given for a routine protocol to extract intact microbial cells from environmental samples using density gradient centrifugation. This protocol is suitable and adaptable for a wide range of environmental samples.


Subject(s)
In Situ Hybridization, Fluorescence/methods , Environmental Microbiology , Microbiota/genetics
5.
Sci Total Environ ; 759: 143467, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33199011

ABSTRACT

Peatlands are wetland ecosystems with great significance as natural habitats and as major global carbon stores. They have been subject to widespread exploitation and degradation with resulting losses in characteristic biota and ecosystem functions such as climate regulation. More recently, large-scale programmes have been established to restore peatland ecosystems and the various services they provide to society. Despite significant progress in peatland science and restoration practice, we lack a process-based understanding of how soil microbiota influence peatland functioning and mediate the resilience and recovery of ecosystem services, to perturbations associated with land use and climate change. We argue that there is a need to: in the short-term, characterise peatland microbial communities across a range of spatial and temporal scales and develop an improved understanding of the links between peatland habitat, ecological functions and microbial processes; in the medium term, define what a successfully restored 'target' peatland microbiome looks like for key carbon cycle related ecosystem services and develop microbial-based monitoring tools for assessing restoration needs; and in the longer term, to use this knowledge to influence restoration practices and assess progress on the trajectory towards 'intact' peatland status. Rapid advances in genetic characterisation of the structure and functions of microbial communities offer the potential for transformative progress in these areas, but the scale and speed of methodological and conceptual advances in studying ecosystem functions is a challenge for peatland scientists. Advances in this area require multidisciplinary collaborations between peatland scientists, data scientists and microbiologists and ultimately, collaboration with the modelling community. Developing a process-based understanding of the resilience and recovery of peatlands to perturbations, such as climate extremes, fires, and drainage, will be key to meeting climate targets and delivering ecosystem services cost effectively.


Subject(s)
Ecosystem , Fires , Carbon , Carbon Cycle , Soil , Wetlands
6.
Microbiome ; 8(1): 31, 2020 03 10.
Article in English | MEDLINE | ID: mdl-32156318

ABSTRACT

BACKGROUND: Methanol is the second most abundant volatile organic compound in the atmosphere, with the majority produced as a metabolic by-product during plant growth. There is a large disparity between the estimated amount of methanol produced by plants and the amount which escapes to the atmosphere. This may be due to utilisation of methanol by plant-associated methanol-consuming bacteria (methylotrophs). The use of molecular probes has previously been effective in characterising the diversity of methylotrophs within the environment. Here, we developed and applied molecular probes in combination with stable isotope probing to identify the diversity, abundance and activity of methylotrophs in bulk and in plant-associated soils. RESULTS: Application of probes for methanol dehydrogenase genes (mxaF, xoxF, mdh2) in bulk and plant-associated soils revealed high levels of diversity of methylotrophic bacteria within the bulk soil, including Hyphomicrobium, Methylobacterium and members of the Comamonadaceae. The community of methylotrophic bacteria captured by this sequencing approach changed following plant growth. This shift in methylotrophic diversity was corroborated by identification of the active methylotrophs present in the soils by DNA stable isotope probing using 13C-labelled methanol. Sequencing of the 16S rRNA genes and construction of metagenomes from the 13C-labelled DNA revealed members of the Methylophilaceae as highly abundant and active in all soils examined. There was greater diversity of active members of the Methylophilaceae and Comamonadaceae and of the genus Methylobacterium in plant-associated soils compared to the bulk soil. Incubating growing pea plants in a 13CO2 atmosphere revealed that several genera of methylotrophs, as well as heterotrophic genera within the Actinomycetales, assimilated plant exudates in the pea rhizosphere. CONCLUSION: In this study, we show that plant growth has a major impact on both the diversity and the activity of methanol-utilising methylotrophs in the soil environment, and thus, the study contributes significantly to efforts to balance the terrestrial methanol and carbon cycle. Video abstract.


Subject(s)
Bacteria/classification , Genetic Variation , Methanol/metabolism , Plant Physiological Phenomena , Soil Microbiology , Alcohol Oxidoreductases/genetics , Bacteria/metabolism , DNA, Bacterial/genetics , Metagenome , Methylobacterium/classification , Methylobacterium/metabolism , Phylogeny , Plants/metabolism , RNA, Ribosomal, 16S/metabolism , Rhizosphere
7.
Front Microbiol ; 10: 2700, 2019.
Article in English | MEDLINE | ID: mdl-31866954

ABSTRACT

Isoprene is a climate-active gas and one of the most abundant biogenic volatile organic compounds (BVOC) released into the atmosphere. In the terrestrial environment, plants are the primary producers of isoprene, releasing between 500 and 750 million tons per year to protect themselves from environmental stresses such as direct radiation, heat, and reactive oxygen species. While many studies have explored isoprene production, relatively little is known about consumption of isoprene by microbes and the most well-characterized isoprene degrader is a Rhodococcus strain isolated from freshwater sediment. In order to identify a wider range of bacterial isoprene-degraders in the environment, DNA stable isotope probing (DNA-SIP) with 13C-labeled isoprene was used to identify active isoprene degraders associated with soil in the vicinity of a willow tree. Retrieval by PCR of 16S rRNA genes from the 13C-labeled DNA revealed an active isoprene-degrading bacterial community dominated by Proteobacteria, together with a minor portion of Actinobacteria, mainly of the genus Rhodococcus. Metagenome sequencing of 13C-labeled DNA from SIP experiments enabled analysis of genes encoding key enzymes of isoprene metabolism from novel isoprene degraders. Informed by these DNA-SIP experiments and working with leaves and soil from the vicinity of tree species known to produce high amounts of isoprene, four novel isoprene-degrading strains of the genera Nocardioides, Ramlibacter, Variovorax and Sphingopyxis, along with strains of Rhodococcus and Gordonia, genera that are known to contain isoprene-degrading strains, were isolated. The use of lower concentrations of isoprene during enrichment experiments has revealed active Gram-negative isoprene-degrading bacteria associated with isoprene-emitting trees. Analysis of isoprene-degradation genes from these new isolates provided a more robust phylogenetic framework for analysis of isoA, encoding the α-subunit of the isoprene monooxygenase, a key molecular marker gene for cultivation-independent studies on isoprene degradation in the terrestrial environment.

8.
Nat Microbiol ; 4(11): 1815-1825, 2019 11.
Article in English | MEDLINE | ID: mdl-31427729

ABSTRACT

Dimethylsulfoniopropionate (DMSP) and its catabolite dimethyl sulfide (DMS) are key marine nutrients1,2 that have roles in global sulfur cycling2, atmospheric chemistry3, signalling4,5 and, potentially, climate regulation6,7. The production of DMSP was previously thought to be an oxic and photic process that is mainly confined to the surface oceans. However, here we show that DMSP concentrations and/or rates of DMSP and DMS synthesis are higher in surface sediment from, for example, saltmarsh ponds, estuaries and the deep ocean than in the overlying seawater. A quarter of bacterial strains isolated from saltmarsh sediment produced DMSP (up to 73 mM), and we identified several previously unknown producers of DMSP. Most DMSP-producing isolates contained dsyB8, but some alphaproteobacteria, gammaproteobacteria and actinobacteria used a methionine methylation pathway independent of DsyB that was previously only associated with higher plants. These bacteria contained a methionine methyltransferase gene (mmtN)-a marker for bacterial synthesis of DMSP through this pathway. DMSP-producing bacteria and their dsyB and/or mmtN transcripts were present in all of the tested seawater samples and Tara Oceans bacterioplankton datasets, but were much more abundant in marine surface sediment. Approximately 1 × 108 bacteria g-1 of surface marine sediment are predicted to produce DMSP, and their contribution to this process should be included in future models of global DMSP production. We propose that coastal and marine sediments, which cover a large part of the Earth's surface, are environments with high levels of DMSP and DMS productivity, and that bacteria are important producers of DMSP and DMS within these environments.


Subject(s)
Bacteria/classification , Gene Regulatory Networks , Geologic Sediments/microbiology , Sulfonium Compounds/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Methionine/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Phylogeny , Seawater/microbiology , Sequence Analysis, RNA
9.
Waste Manag ; 95: 365-369, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31351622

ABSTRACT

Green waste composting materials and finished composts were collected from different commercial ex situ composting sites all treating source segregated green waste feedstocks. Stability of each material was determined using the standard ORG0020 dynamic respiration test. To assess whether stability could be used as an indicator for the potential suitability of green waste composting materials and finished composts as amendments for soil bioremediation, comparison was made with alkane and aromatic hydrocarbon degrader abundance determined using a quantitative PCR (qPCR) approach. Specifically, primers targeting alkB and, polyaromatic hydrocarbon ring-hydroxylating dioxygenases genes (PAH-RHD) of Gram positive (GP) and Gram negative (GN) populations were used for qPCR analysis. The results showed no direct correction between compost stability and gene abundance. Further, increase in alkB gene abundance was not linked to PAH-RHD gene abundance. The results support the use of qPCR as a tool for screening organic amendments on a site by site basis for soil bioremediation treatment.


Subject(s)
Composting , Hydrocarbons, Aromatic , Alkanes , Biodegradation, Environmental , Soil
10.
Front Microbiol ; 10: 1040, 2019.
Article in English | MEDLINE | ID: mdl-31134039

ABSTRACT

Methanethiol (MeSH) and dimethylsulfide (DMS) are volatile organic sulfur compounds (VOSCs) with important roles in sulfur cycling, signaling and atmospheric chemistry. DMS can be produced from MeSH through a reaction mediated by the methyltransferase MddA. The mddA gene is present in terrestrial and marine metagenomes, being most abundant in soil environments. The substrate for MddA, MeSH, can also be oxidized by bacteria with the MeSH oxidase (MTO) enzyme, encoded by the mtoX gene, found in marine, freshwater and soil metagenomes. Methanethiol-dependent DMS production (Mdd) pathways have been shown to function in soil and marine sediments, but have not been characterized in detail in the latter environments. In addition, few molecular studies have been conducted on MeSH consumption in the environment. Here, we performed process measurements to confirm that Mdd-dependent and Mdd-independent MeSH consumption pathways are active in tested surface saltmarsh sediment when MeSH is available. We noted that appreciable natural Mdd-independent MeSH and DMS consumption processes masked Mdd activity. 16S rRNA gene amplicon sequencing and metagenomics data showed that Methylophaga, a bacterial genus known to catabolise DMS and MeSH, was enriched by the presence of MeSH. Moreover, some MeSH and/or DMS-degrading bacteria isolated from this marine environment lacked known DMS and/or MeSH cycling genes and can be used as model organisms to potentially identify novel genes in these pathways. Thus, we are likely vastly underestimating the abundance of MeSH and DMS degraders in these marine sediment environments. The future discovery and characterization of novel enzymes involved in MeSH and/or DMS cycling is essential to better assess the role and contribution of microbes to global organosulfur cycling.

11.
Proc Natl Acad Sci U S A ; 115(51): 13081-13086, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30498029

ABSTRACT

The climate-active gas isoprene (2-methyl-1,3-butadiene) is released to the atmosphere in huge quantities, almost equaling that of methane, yet we know little about the biological cycling of isoprene in the environment. Although bacteria capable of growth on isoprene as the sole source of carbon and energy have previously been isolated from soils and sediments, no microbiological studies have targeted the major source of isoprene and examined the phyllosphere of isoprene-emitting trees for the presence of degraders of this abundant carbon source. Here, we identified isoprene-degrading bacteria in poplar tree-derived microcosms by DNA stable isotope probing. The genomes of isoprene-degrading taxa were reconstructed, putative isoprene metabolic genes were identified, and isoprene-related gene transcription was analyzed by shotgun metagenomics and metatranscriptomics. Gram-positive bacteria of the genus Rhodococcus proved to be the dominant isoprene degraders, as previously found in soil. However, a wider diversity of isoprene utilizers was also revealed, notably Variovorax, a genus not previously associated with this trait. This finding was confirmed by expression of the isoprene monooxygenase from Variovorax in a heterologous host. A Variovorax strain that could grow on isoprene as the sole carbon and energy source was isolated. Analysis of its genome confirmed that it contained isoprene metabolic genes with an identical layout and high similarity to those identified by DNA-stable isotope probing and metagenomics. This study provides evidence of a wide diversity of isoprene-degrading bacteria in the isoprene-emitting tree phyllosphere and greatly enhances our understanding of the biodegradation of this important metabolite and climate-active gas.


Subject(s)
Butadienes/metabolism , Comamonadaceae/metabolism , Genome, Bacterial , Hemiterpenes/metabolism , Metagenomics , Mixed Function Oxygenases/metabolism , Populus/metabolism , Rhodococcus/metabolism , Biodegradation, Environmental , Comamonadaceae/classification , Comamonadaceae/genetics , DNA, Bacterial/genetics , Mixed Function Oxygenases/genetics , Phylogeny , Populus/microbiology , Rhodococcus/classification , Rhodococcus/genetics , Soil Microbiology
12.
Article in English | MEDLINE | ID: mdl-30533926

ABSTRACT

Methylotrophs of the family Methylophilaceae were isolated from grassland soil. Here, we report the draft genome sequences of two obligate methylotrophs, Methylovorus sp. strain MM2 and Methylobacillus sp. strain MM3. These genome sequences provide further insights into the genetic and metabolic diversity of the Methylophilaceae.

13.
Biochem Soc Trans ; 46(2): 413-421, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29540506

ABSTRACT

Prymnesium parvum is a toxin-producing microalga that causes harmful algal blooms globally, which often result in large-scale fish kills that have severe ecological and economic implications. Although many toxins have previously been isolated from P. parvum, ambiguity still surrounds the responsible ichthyotoxins in P. parvum blooms and the biotic and abiotic factors that promote bloom toxicity. A major fish kill attributed to P. parvum occurred in Spring 2015 on the Norfolk Broads, a low-lying set of channels and lakes (Broads) found on the East of England. Here, we discuss how water samples taken during this bloom have led to diverse scientific advances ranging from toxin analysis to discovery of a new lytic virus of P. parvum, P. parvum DNA virus (PpDNAV-BW1). Taking recent literature into account, we propose key roles for sialic acids in this type of viral infection. Finally, we discuss recent practical detection and management strategies for controlling these devastating blooms.


Subject(s)
Haptophyta/growth & development , Harmful Algal Bloom , Sugars , Animals , DNA/genetics , England , Fishes , Haptophyta/genetics , Haptophyta/metabolism , Haptophyta/virology , Toxins, Biological/metabolism
14.
Genome Announc ; 6(8)2018 Feb 22.
Article in English | MEDLINE | ID: mdl-29472327

ABSTRACT

Permafrost environments play a crucial role in global carbon and methane cycling. We report here the draft genome sequence of Methylocella silvestris TVC, a new facultative methanotroph strain, isolated from the Siksik Creek catchment in the continuous permafrost zone of Inuvik (Northwest Territories, Canada).

15.
Environ Microbiol ; 20(3): 1016-1029, 2018 03.
Article in English | MEDLINE | ID: mdl-29314604

ABSTRACT

Understanding of global methane sources and sinks is a prerequisite for the design of strategies to counteract global warming. Microbial methane oxidation in soils represents the largest biological sink for atmospheric methane. However, still very little is known about the identity, metabolic properties and distribution of the microbial group proposed to be responsible for most of this uptake, the uncultivated upland soil cluster α (USCα). Here, we reconstructed a draft genome of USCα from a combination of targeted cell sorting and metagenomes from forest soil, providing the first insights into its metabolic potential and environmental adaptation strategies. The 16S rRNA gene sequence recovered was distinctive and suggests this crucial group as a new genus within the Beijerinckiaceae, close to Methylocapsa. Application of a fluorescently labelled suicide substrate for the particulate methane monooxygenase enzyme (pMMO) coupled to 16S rRNA fluorescence in situ hybridisation (FISH) allowed for the first time a direct link of the high-affinity activity of methane oxidation to USCα cells in situ. Analysis of the global biogeography of this group further revealed its presence in previously unrecognized habitats, such as subterranean and volcanic biofilm environments, indicating a potential role of these environments in the biological sink for atmospheric methane.


Subject(s)
Bacteria/metabolism , Methane/metabolism , Soil Microbiology , Bacteria/classification , Bacteria/genetics , Oxidation-Reduction , Oxygenases , Phylogeography , RNA, Ribosomal, 16S/genetics , Soil/chemistry
16.
ISME J ; 11(10): 2379-2390, 2017 10.
Article in English | MEDLINE | ID: mdl-28763056

ABSTRACT

Dimethylsulfide (DMS) is an environmentally important trace gas with roles in sulfur cycling, signalling to higher organisms and in atmospheric chemistry. DMS is believed to be predominantly produced in marine environments via microbial degradation of the osmolyte dimethylsulfoniopropionate (DMSP). However, significant amounts of DMS are also generated from terrestrial environments, for example, peat bogs can emit ~6 µmol DMS m-2 per day, likely via the methylation of methanethiol (MeSH). A methyltransferase enzyme termed 'MddA', which catalyses the methylation of MeSH, generating DMS, in a wide range of bacteria and some cyanobacteria, may mediate this process, as the mddA gene is abundant in terrestrial metagenomes. This is the first study investigating the functionality of MeSH-dependent DMS production (Mdd) in a wide range of aerobic environments. All soils and marine sediment samples tested produced DMS when incubated with MeSH. Cultivation-dependent and cultivation-independent methods were used to assess microbial community changes in response to MeSH addition in a grassland soil where 35.9% of the bacteria were predicted to contain mddA. Bacteria of the genus Methylotenera were enriched in the presence of MeSH. Furthermore, many novel Mdd+ bacterial strains were isolated. Despite the abundance of mddA in the grassland soil, the Mdd pathway may not be a significant source of DMS in this environment as MeSH addition was required to detect DMS at only very low conversion rates.


Subject(s)
Bacteria/metabolism , Soil Microbiology , Sulfhydryl Compounds/metabolism , Sulfides/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Geologic Sediments/microbiology , Metagenome , Methylophilaceae/metabolism , Soil/chemistry , Sulfhydryl Compounds/analysis , Sulfonium Compounds/metabolism , Sulfur/metabolism
17.
Environ Microbiol ; 19(6): 2246-2257, 2017 06.
Article in English | MEDLINE | ID: mdl-28244196

ABSTRACT

Nitrogen is a key limiting resource for biomass production in the marine environment. Methylated amines, released from the degradation of osmolytes, could provide a nitrogen source for marine microbes. Thus far, studies in aquatic habitats on the utilization of methylamine, the simplest methylated amine, have mainly focussed on the fate of the carbon from this compound. Various groups of methylotrophs, microorganisms that can grow on one-carbon compounds, use methylamine as a carbon source. Non-methylotrophic microorganisms may also utilize methylamine as a nitrogen source, but little is known about their diversity, especially in the marine environment. In this proof-of-concept study, stable isotope probing (SIP) was used to identify microorganisms from a coastal environment that assimilate nitrogen from methylamine. SIP experiments using 15 N methylamine combined with metagenomics and metaproteomics facilitated identification of active methylamine-utilizing Alpha- and Gammaproteobacteria. The draft genomes of two methylamine utilizers were obtained and their metabolism with respect to methylamine was examined. Both bacteria identified in these SIP experiments used the γ-glutamyl-methylamide pathway, found in both methylotrophs and non-methylotrophs, to metabolize methylamine. The utilization of 15 N methylamine also led to the release of 15 N ammonium that was used as nitrogen source by other microorganisms not directly using methylamine.


Subject(s)
Alphaproteobacteria/metabolism , Gammaproteobacteria/metabolism , Methylamines/metabolism , Nitrogen/metabolism , Carbon/metabolism , Carbon Isotopes/metabolism , Ecosystem , Metagenomics
18.
Curr Opin Biotechnol ; 41: 1-8, 2016 10.
Article in English | MEDLINE | ID: mdl-26946369

ABSTRACT

The ability to explore microbial diversity and function has been enhanced by novel experimental and computational tools. The incorporation of stable isotopes into microbial biomass enables the recovery of labeled nucleic acids from active microorganisms, despite their initial abundance and culturability. Combining stable-isotope probing (SIP) with metagenomics provides access to genomes from microorganisms involved in metabolic processes of interest. Studies using metagenomic analysis on DNA obtained from DNA-SIP incubations can be ideal for the recovery of novel enzymes for biotechnology applications, including biodegradation, biotransformation, and biosynthesis. This chapter introduces metagenomic and DNA-SIP methodologies, highlights biotechnology-focused studies that combine these approaches, and provides perspectives on future uses of these methods as analysis tools for applied and environmental microbiology.


Subject(s)
Carbon Isotopes/analysis , DNA Probes/genetics , DNA, Bacterial/genetics , Isotope Labeling/methods , Metagenomics/methods , Animals , DNA Probes/chemistry , DNA Probes/metabolism , DNA, Bacterial/chemistry , DNA, Bacterial/metabolism , Humans
19.
Environ Microbiol ; 17(7): 2254-60, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25367104

ABSTRACT

The methane emitted from rice fields originates to a large part (up to 60%) from plant photosynthesis and is formed on the rice roots by methanogenic archaea. To investigate to which extent root colonization controls methane (CH4 ) emission, we pulse-labeled rice microcosms with (13) CO2 to determine the rates of (13) CH4 emission exclusively derived from photosynthates. We also measured emission of total CH4 ((12+13) CH4 ), which was largely produced in the soil. The total abundances of archaea and methanogens on the roots and in the soil were analysed by quantitative polymerase chain reaction of the archaeal 16S rRNA gene and the mcrA gene coding for a subunit of the methyl coenzyme M reductase respectively. The composition of archaeal and methanogenic communities was determined with terminal restriction fragment length polymorphism (T-RFLP). During the vegetative growth stages, emission rates of (13) CH4 linearly increased with the abundance of methanogenic archaea on the roots and then decreased during the last plant growth stage. Rates of (13) CH4 emission and the abundance of methanogenic archaea were lower when the rice was grown in quartz-vermiculite with only 10% rice soil. Rates of total CH4 emission were not systematically related to the abundance of methanogenic archaea in soil plus roots. The composition of the archaeal communities was similar under all conditions; however, the analysis of mcrA genes indicated that the methanogens differed between the soil and root. Our results support the hypothesis that rates of photosynthesis-driven CH4 emission are limited by the abundance of methanogens on the roots.


Subject(s)
Euryarchaeota/metabolism , Methane/biosynthesis , Oryza/metabolism , Oryza/microbiology , Plant Roots/microbiology , Euryarchaeota/classification , Euryarchaeota/genetics , Oxidoreductases/genetics , Photosynthesis/physiology , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , Soil , Soil Microbiology
20.
ISME J ; 6(11): 2128-39, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22695859

ABSTRACT

Aerobic methane-oxidizing bacteria (MOB) use a restricted substrate range, yet >30 species-equivalent operational taxonomical units (OTUs) are found in one paddy soil. How these OTUs physically share their microhabitat is unknown. Here we highly resolved the vertical distribution of MOB and their activity. Using microcosms and cryosectioning, we sub-sampled the top 3-mm of a water-saturated soil at near in situ conditions in 100-µm steps. We assessed the community structure and activity using the particulate methane monooxygenase gene pmoA as a functional and phylogenetic marker by terminal restriction fragment length polymorphism (t-RFLP), a pmoA-specific diagnostic microarray, and cloning and sequencing. pmoA genes and transcripts were quantified using competitive reverse transcriptase PCR combined with t-RFLP. Only a subset of the methanotroph community was active. Oxygen microprofiles showed that 89% of total respiration was confined to a 0.67-mm-thick zone immediately above the oxic-anoxic interface, most probably driven by methane oxidation. In this zone, a Methylobacter-affiliated OTU was highly active with up to 18 pmoA transcripts per cell and seemed to be adapted to oxygen and methane concentrations in the micromolar range. Analysis of transcripts with a pmoA-specific microarray found a Methylosarcina-affiliated OTU associated with the surface zone. High oxygen but only nanomolar methane concentrations at the surface suggested an adaptation of this OTU to oligotrophic conditions. No transcripts of type II methanotrophs (Methylosinus, Methylocystis) were found, which indicated that this group was represented by resting stages only. Hence, different OTUs within a single guild shared the same microenvironment and exploited different niches.


Subject(s)
Methylococcaceae/isolation & purification , Soil Microbiology , Ecosystem , Methylococcaceae/genetics , Methylococcaceae/metabolism , Microarray Analysis , Oryza , Oxygenases/genetics , Phylogeny , Polymorphism, Restriction Fragment Length , Reverse Transcriptase Polymerase Chain Reaction , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL