Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Regen Med ; 16(11): 989-1003, 2021 11.
Article in English | MEDLINE | ID: mdl-34633207

ABSTRACT

Aim: To compare therapeutic benefits of different immunophilin ligands for treating nerve injuries. Materials & methods: Cyclosporine, FK506 and rapamycin, were evaluated first in vitro on a serum-free culture of embryonic dorsal root ganglia followed by a new in vivo model of chronic nerve compression. Results: Outcomes of the in vitro study have shown a potent effect of cyclosporine and FK506, on dorsal root ganglia axonal outgrowth, comparable to the effect of nerve growth factor. Rapamycin exhibited only a moderate effect. The in vivo study revealed the beneficial effects of cyclosporine, FK506 and rapamycin for neuromuscular regeneration. Cyclosporine showed the better maintenance of the tissues and function. Conclusion: Cyclosporine, FK506 and rapamycin drugs showed potential for treating peripheral nerve chronic compression injuries.


Subject(s)
Pharmaceutical Preparations , Tacrolimus , Cyclosporine/pharmacology , Nerve Regeneration , Sirolimus/pharmacology , Tacrolimus/pharmacology
2.
Regen Med ; 16(10): 931-947, 2021 10.
Article in English | MEDLINE | ID: mdl-34553612

ABSTRACT

Aim: To develop a consistent model to standardize research in the field of chronic peripheral nerve neuropathy. Methods: The left sciatic nerve of 8-week-old Sprague-Dawley rats was compressed using a customized instrument leaving a defined post injury nerve lumen (400 µm, 250 µm, 100 µm, 0 µm) for 6 weeks. Sensory and motor outcomes were measured weekly, and histomorphology and electrophysiology after 6 weeks. Results: The findings demonstrated compression depth-dependent sensory and motor pathologies. Quantitative measurements revealed a significant myelin degeneration, axon irregularities and muscle atrophy. At the functional level, we highlighted the dynamics of the different injury profiles. Conclusion: Our novel model of chronic peripheral nerve compression is a useful tool for research on pathophysiology and new therapeutic approaches.


Subject(s)
Peripheral Nerve Injuries , Pharmaceutical Preparations , Animals , Axons , Nerve Regeneration , Rats , Rats, Sprague-Dawley , Sciatic Nerve
3.
Cells ; 9(9)2020 08 21.
Article in English | MEDLINE | ID: mdl-32839392

ABSTRACT

We report on a potential strategy involving the exogenous neurotrophic factors (NTF) for enhancing the neurotrophic capacity of human adipose stem cells (ASC) in vitro. For this, ASC were stimulated for three days using NTF, i.e., nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT3), NT4, glial cell-derived neurotrophic factor (GDNF), and ciliary neurotrophic factor (CNTF). The resulting conditioned medium (CM) as well as individual NTF exhibited distinct effects on axonal outgrowth from dorsal root ganglion (DRG) explants. In particular, CM derived from NT3-stimulated ASC (CM-NT3-ASC) promoted robust axonal outgrowth. Subsequent transcriptional analysis of DRG cultures in response to CM-NT3-ASC displayed significant upregulation of STAT-3 and GAP-43. In addition, phosphoproteomic analysis of NT3-stimulated ASC revealed significant changes in the phosphorylation state of different proteins that are involved in cytokine release, growth factors signaling, stem cell maintenance, and differentiation. Furthermore, DRG cultures treated with CM-NT3-ASC exhibited significant changes in the phosphorylation levels of proteins involved in tubulin and actin cytoskeletal pathways, which are crucial for axonal growth and elongation. Thus, the results obtained at the transcriptional, proteomic, and cellular level reveal significant changes in the neurotrophic capacity of ASC following NT3 stimulation and provide new options for improving the axonal growth-promoting potential of ASC in vitro.


Subject(s)
Adipose Tissue/metabolism , Nerve Regeneration/physiology , Proteomics/methods , Stem Cells/metabolism , Tissue Engineering/methods , Animals , Cell Differentiation , Chick Embryo , Humans
4.
Bioengineering (Basel) ; 7(2)2020 May 05.
Article in English | MEDLINE | ID: mdl-32380789

ABSTRACT

Peripheral nerve injuries often result in lifelong disabilities despite advanced surgical interventions, indicating the urgent clinical need for effective therapies. In order to improve the potency of adipose-derived stem cells (ASC) for nerve regeneration, the present study focused primarily on ex-vivo stimulation of ASC by using growth factors, i.e., nerve growth factor (NGF) or vascular endothelial growth factor (VEGF) and secondly on fibrin-hydrogel nerve conduits (FNC) assisted ASC delivery strategies, i.e., intramural vs. intraluminal loading. ASC were stimulated by NGF or VEGF for 3 days and the resulting secretome was subsequently evaluated in an in vitro axonal outgrowth assay. For the animal study, a 10 mm sciatic nerve gap-injury was created in rats and reconstructed using FNC loaded with ASC. Secretome derived from NGF-stimulated ASC promoted significant axonal outgrowth from the DRG-explants in comparison to all other conditions. Thus, NGF-stimulated ASC were further investigated in animals and found to enhance early nerve regeneration as evidenced by the increased number of ß-Tubulin III+ axons. Notably, FNC assisted intramural delivery enabled the improvement of ASC's therapeutic efficacy in comparison to the intraluminal delivery system. Thus, ex-vivo stimulation of ASC by NGF and FNC assisted intramural delivery may offer new options for developing effective therapies.

SELECTION OF CITATIONS
SEARCH DETAIL
...