Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Deliv Transl Res ; 14(2): 542-554, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37648938

ABSTRACT

The goal of the present work consisted of the formulation development and evaluation of quinapyramine sulphate (QS)-loaded long-acting oil-based nanosuspension for improved antitrypanosomal effect. QS was transformed into a hydrophobic ionic complex using anionic sodium cholate (Na.C). The complex was characterized by FTIR, DSC, and XRD. Oil-based nanosuspension was prepared by dispersing the QS-Na.C complex in thixotropically thickened olive oil. The nanoformulation was found to be cytocompatible (82.5 ± 5.87% cell viability at the minimum effective concentration [MEC]) in THP-1 cell lines and selectively trypanotoxic (p < 0.0001). The pharmacokinetic studies of QS-Na.C complex-loaded oily nanosuspension showed 13.54-fold, 7.09-fold, 1.78-fold, and 17.35-fold increases in t1/2, AUC0-∞, Vz/F, and MRT0-ꝏ, respectively, as compared to free QS. Moreover, a 7.08-fold reduction in plasma clearance was observed after the treatment with the optimized formulation in Wistar rats. Furthermore, treatment with QS-Na.C complex-loaded oily nanosuspension (7.5 mg/kg) in T. evansi-infected mice model showed the absence of parasitaemia for more than 75 days after the treatment during in vivo efficacy studies. The efficacy of the treatment was assessed by observation of blood smear and PCR assay for DNA amplification. To conclude, our findings suggest that the efficient delivery of QS from the developed QS-Na.C complex-loaded oily nanosuspension could be a promising treatment option for veterinary infections against trypanosomiasis.


Subject(s)
Nanoparticles , Trypanosomiasis , Animals , Rats , Mice , Sulfates , Rats, Wistar , Quinolinium Compounds/chemistry , Disease Models, Animal , Nanoparticles/chemistry , Suspensions
2.
Crit Rev Ther Drug Carrier Syst ; 40(5): 93-123, 2023.
Article in English | MEDLINE | ID: mdl-37522550

ABSTRACT

Osteoporosis is a bone incapacitating malady which globally accounts for over hundred million fractures annually. Therapeutic interventions for management of osteoporosis are divided as antiresorptive agents and osteoanabolic agents. Teriparatide is the only osteoana-bolic peptide which is available world-wide for the treatment of osteoporosis. It is administered as a daily subcutaneous injection for the treatment of osteoporosis which results in both poor patient compliance and increase in the cost of the therapy. Even after 20 years of clinical use of teriparatide, no formulation of teriparatide has yet been translated from lab to clinic which can be delivered by non-invasive route The present review critically discusses attempts made by the researchers for efficient delivery of teriparatide through various non-invasive routes such as oral, nasal, pulmonary, and transdermal route. It also discusses long-acting injectable formulations of teriparatide to improve patient compliance. Understanding on the pharmacology of teriparatide highlights the enhanced effectiveness of intermittent/pulsatile mode of teriparatide delivery which has also been elaborated. In addition, targeted delivery of teriparatide using different bone specific targeting moieties has been also discussed.

3.
Recent Adv Drug Deliv Formul ; 16(3): 170-191, 2022.
Article in English | MEDLINE | ID: mdl-35986528

ABSTRACT

BACKGROUND: The Hot Melt Extrusion (HME) technique has shown tremendous potential in transforming highly hydrophobic crystalline drug substances into amorphous solids without using solvents. This review explores in detail the general considerations involved in the process of HME, its applications and advances. OBJECTIVE: The present review examines the physicochemical properties of polymers pertinent to the HME process. Theoretical approaches for the screening of polymers are highlighted as a part of successful HME processed drug products. The critical quality attributes associated with the process of HME are also discussed in this review. HME plays a significant role in the dosage form design, and the same has been mentioned with suitable examples. The role of HME in developing several sustained release formulations, films, and implants is described along with the research carried out in a similar domain. METHODS: The method includes the collection of data from different search engines like PubMed, ScienceDirect, and SciFinder to get coverage of relevant literature for accumulating appropriate information regarding HME, its importance in pharmaceutical product development, and advanced applications. RESULTS: HME is known to have advanced pharmaceutical applications in the domains related to 3D printing, nanotechnology, and PAT technology. HME-based technologies explored using Design-of- Experiments also lead to the systematic development of pharmaceutical formulations. CONCLUSION: HME remains an adaptable and differentiated technique for overall formulation development.


Subject(s)
Hot Melt Extrusion Technology , Technology, Pharmaceutical , Technology, Pharmaceutical/methods , Hot Temperature , Polymers/chemistry , Delayed-Action Preparations
4.
J Pharm Sci ; 110(5): 2241-2249, 2021 05.
Article in English | MEDLINE | ID: mdl-33549701

ABSTRACT

The objective of the present work is to prepare and evaluate ionically complexed Quinapyramine sulphate (QS) loaded lipid nanoparticles and its scale up using geometric similarity principle. Docusate sodium (DS), at a molar ratio of 1:2 of QS to DS, was used to prepare hydrophobic Quinapyramine sulphate-Docusate sodium (QS-DS) ionic complex. Based on the difference in total solubility parameter and polarity of QS-DS complex and different lipids, precirol was selected as a lipid for the preparation of lipidic nanoparticles. The particle size, zeta potential, and % entrapment efficiency (%EE) of QS-DS ionic complex loaded solid lipid nanoparticles (QS-DS-SLN) was found to be 250.10 ± 26.04 nm, -27.41 ± 4.18 mV and 81.26 ± 4.67% respectively. FTIR studies confirmed the formation of QS-DS ionic complex. DSC and XRD studies revealed the amorphous nature of QS in QS-DS-SLN. The spherical shape of nanoparticles was confirmed by scanning electron microscopy. QS-DS-SLN showed sustained release of QS for up to 60 h. No significant difference was observed in particle size, zeta potential, and % entrapment efficiency of pilot-scale batch prepared by using rotational speed of 700 rpm. In conclusion, ionic complexation approach can be used to increase % EE of charged drugs into lipid nanoparticles.


Subject(s)
Dioctyl Sulfosuccinic Acid , Nanoparticles , Drug Carriers , Lipids , Particle Size , Quinolinium Compounds , Sulfates
5.
Drug Deliv Transl Res ; 10(4): 945-961, 2020 08.
Article in English | MEDLINE | ID: mdl-32383004

ABSTRACT

Trypanosomiasis is a parasitic infection caused by Trypanosoma. It is one of the major causes of deaths in underprivileged, rural areas of Africa, America and Asia. Depending on the parasite species responsible for the disease, it can take two forms namely African trypanosomiasis (sleeping sickness) and American trypanosomiasis (Chagas disease). The complete life-cycle stages of trypanosomes span between insect vector (tsetse fly, triatomine bug) and mammalian host (humans, animals). Only few drugs have been approved for the treatment of trypanosomiasis. Moreover, current trypanocidal therapy has major limitations of poor efficacy, serious side effects and drug resistance. Due to the lack of economic gains from tropical parasitic infection, it has always been neglected by the researchers and drug manufacturers. There is an immense need of more effective innovative strategies to decrease the deaths associated with this diseases. Nanotechnological approaches for delivery of existing drugs have shown significant improvement in efficacy with many-fold decrease in their dose. The review emphasizes on nanotechnological interventions in the treatment of trypanosomiasis in both humans and animals. Current trypanocidal therapy and their limitations have also been discussed briefly. Graphical abstract.


Subject(s)
Drug Delivery Systems , Trypanocidal Agents/administration & dosage , Trypanosomiasis/drug therapy , Animals , Drug Resistance , Humans , Life Cycle Stages , Nanotechnology , Trypanosoma/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...