Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38931556

ABSTRACT

This paper reports a rapid and sensitive sensor for the detection and quantification of the COVID-19 N-protein (N-PROT) via an electrochemical mechanism. Single-frequency electrochemical impedance spectroscopy was used as a transduction method for real-time measurement of the N-PROT in an immunosensor system based on gold-conjugate-modified carbon screen-printed electrodes (Cov-Ag-SPE). The system presents high selectivity attained through an optimal stimulation signal composed of a 0.0 V DC potential and 10 mV RMS-1 AC signal at 100 Hz over 300 s. The Cov-Ag-SPE showed a log response toward N-PROT detection at concentrations from 1.0 ng mL-1 to 10.0 µg mL-1, with a 0.977 correlation coefficient for the phase (θ) variation. An ML-based approach could be created using some aspects observed from the positive and negative samples; hence, it was possible to classify 252 samples, reaching 83.0, 96.2 and 91.3% sensitivity, specificity, and accuracy, respectively, with confidence intervals (CI) ranging from 73.0 to 100.0%. Because impedance spectroscopy measurements can be performed with low-cost portable instruments, the immunosensor proposed here can be applied in point-of-care diagnostics for mass testing, even in places with limited resources, as an alternative to the common diagnostics methods.


Subject(s)
Biosensing Techniques , COVID-19 , Dielectric Spectroscopy , Gold , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/virology , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Humans , SARS-CoV-2/isolation & purification , SARS-CoV-2/immunology , Dielectric Spectroscopy/instrumentation , Dielectric Spectroscopy/methods , Gold/chemistry , Electrodes , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Immunoassay/methods , Immunoassay/instrumentation , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/analysis , Carbon/chemistry , Phosphoproteins/analysis
2.
Diagnostics (Basel) ; 13(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37046573

ABSTRACT

Quick and reliable mass testing of infected people is an effective tool for the contingency of SARS-CoV-2. During the COVID-19 pandemic, Point-of-Care (POC) tests using Loop-Mediated Isothermal Amplification (LAMP) arose as a useful diagnostic tool. LAMP tests are a robust and fast alternative to Polymerase Chain Reaction (PCR), and their isothermal property allows easy incorporation into POC platforms. The main drawback of using colorimetric LAMP is the reported short-term stability of the pre-mixed reagents, as well as the relatively high rate of false-positive results. Also, low-magnitude amplification can produce a subtle color change, making it difficult to discern a positive reaction. This paper presents Hilab Molecular, a portable device that uses the Internet of Things and Artificial Intelligence to pre-analyze colorimetric data. In addition, we established manufacturing procedures to increase the stability of colorimetric RT-LAMP tests. We show that ready-to-use reactions can be stored for up to 120 days at -20 °C. Furthermore, we validated both the Hilab Molecular device and the Hilab RT-LAMP test for SARS-CoV-2 using 581 patient samples without any purification steps. We achieved a sensitivity of 92.93% and specificity of 99.42% (samples with CT ≤ 30) when compared to RT-qPCR.

SELECTION OF CITATIONS
SEARCH DETAIL
...