Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Ophthalmol ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38477813

ABSTRACT

PURPOSE: To investigate the surgical success and efficacy of XEN45 implantation (XEN45 µm, AbbVie Inc., USA) with and without combined cataract surgery up to the first 5 years. METHODS: In a prospective observational monocentric trial, 192 eyes of 157 patients with open-angle glaucoma received either XEN45 implants only (solo surgery group) or combined surgery/cataract surgeries (combined surgery group). Surgical success (qualified and full success; IOP-limit: ≤12, 15, 18, 21 mmHg), time to secondary IOP-lowering procedure, IOP and number of IOP-lowering medications were analysed for 1, 2, 3, 4 and 5 years. RESULTS: Compared to baseline, IOP (24.1 ± 8.1 to 12.6 ± 2.8 mmHg, -48%, p < 0.001) and the number of IOP-lowering medications (3.0 ± 1.0 to 1.5 ± 1.2, -50%, p < 0.001) decreased significantly at 5 years. Although no differences between IOP and the number of IOP-lowering medication courses between the groups were detected at 5 years (p > 0.11), the combined procedure (63%, 37%) showed better success rates compared to the solo procedure (36%, 13%) in the definition IOP ≤18 and ≤12 mmHg (p = 0.035, 0.028). Solo XEN45 procedures had a higher rate of secondary IOP-lowering procedures compared to combined XEN45 cataract procedures (hazard ratio: 2.02, 95%CI: 1.03-3.97, p = 0.04). Twenty per cent of the eyes, including both procedures, required a secondary IOP-lowering procedure within 5 years. CONCLUSIONS: The XEN45 implant is effective in lowering IOP and the number of IOP-lowering medications in patients with open-angle glaucoma in the mid-term. Comparing XEN45 implant results with the results of trabeculectomy available in current literature, we speculate that there might be a higher surgical success rate without medications in favour of trabeculectomy.

2.
Sci Rep ; 13(1): 13239, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37580467

ABSTRACT

The endosomal-lysosomal system (ELS), which carries out cellular processes such as cellular waste degradation via autophagy, is essential for cell homeostasis. ELS inefficiency leads to augmented levels of damaged organelles and intracellular deposits. Consequently, the modulation of autophagic flux has been recognized as target to remove damaging cell waste. Recently, we showed that cysteinyl leukotriene receptor 1 (CysLTR1) antagonist application increases the autophagic flux in the retinal pigment epithelial cell line ARPE-19. Consequently, we investigated the effect of CysLTR1 inhibition-driven autophagy induction on aggregated proteins in ARPE-19 cells using flow cytometry analysis. A subset of ARPE-19 cells expressed CysLTR1 on the surface (SE+); these cells showed increased levels of autophagosomes, late endosomes/lysosomes, aggregated proteins, and autophagy as well as decreased reactive oxygen species (ROS) formation. Furthermore, CysLTR1 inhibition for 24 h using the antagonist zafirlukast decreased the quantities of autophagosomes, late endosomes/lysosomes, aggregated proteins and ROS in CysLTR1 SE- and SE+ cells. We concluded that high levels of plasma membrane-localized CysLTR1 indicate an increased amount of aggregated protein, which raises the rate of autophagic flux. Furthermore, CysLTR1 antagonist application potentially mimics the physiological conditions observed in CysLTR1 SE+ cells and can be considered as strategy to dampen cellular aging.


Subject(s)
Autophagosomes , Autophagy , Epithelial Cells , Autophagosomes/metabolism , Epithelial Cells/metabolism , Lysosomes/metabolism , Reactive Oxygen Species/metabolism , Retina/cytology
3.
Exp Eye Res ; 232: 109517, 2023 07.
Article in English | MEDLINE | ID: mdl-37211287

ABSTRACT

The cysteinyl leukotrienes (CysLTs) have important functions in the regulation of inflammation and cellular stress. Blocking the CysLT receptors (CysLTRs) with specific antagonists is beneficial against progression of retinopathies (e.g. diabetic retinopathy, wet AMD). However, the exact cellular localization of the CysLTRs and their endogenous ligands in the eye have not been elucidated in detail yet. It is also not known whether the expression patterns differ between humans and animal models. Therefore, the present study aimed to describe and compare the distribution of two important enzymes in CysLT biosynthesis, 5-lipoxygenase (5-LOX) and 5-lipoxygenase-activating protein (FLAP), and of CysLTR1 and CysLTR2 in healthy human, rat and mouse eyes. Human donor eyes (n = 10) and eyes from adult Sprague Dawley rats (n = 5) and CD1 mice (n = 8) of both sexes were collected. The eyes were fixed in 4% paraformaldehyde and cross-sections were investigated by immunofluorescence with specific antibodies against 5-LOX, FLAP (human tissue only), CysLTR1 and CysLTR2. Flat-mounts of the human choroid were prepared and processed similarly. Expression patterns were assessed and semiquantitatively evaluated using a confocal fluorescence microscope (LSM710, Zeiss). We observed so far unreported expression sites for CysLT system components in various ocular tissues. Overall, we detected expression of 5-LOX, CysLTR1 and CysLTR2 in the human, rat and mouse cornea, conjunctiva, iris, lens, ciliary body, retina and choroid. Importantly, expression profiles of CysLTR1 and CysLTR2 were highly similar between human and rodent eyes. FLAP was expressed in all human ocular tissues except the lens. Largely weak immunoreactivity of FLAP and 5-LOX was observed in a few, yet unidentified, cells of diverse ocular tissues, indicating low levels of CysLT biosynthesis in healthy eyes. CysLTR1 was predominantly detected in ocular epithelial cells, supporting the involvement of CysLTR1 in stress and immune responses. CysLTR2 was predominantly expressed in neuronal structures, suggesting neuromodulatory roles of CysLTR2 in the eye and revealing disparate functions of CysLTRs in ocular tissues. Taken together, we provide a comprehensive protein expression atlas of CysLT system components in the human and rodent eye. While the current study is purely descriptive and therefore does not allow significant functional conclusions yet, it represents an important basis for future studies in diseased ocular tissues in which distribution patterns or expression levels of the CysLT system might be altered. Furthermore, this is the first comprehensive study to elucidate expression patterns of CysLT system components in human and animal models that will help to identify and understand functions of the system as well as mechanisms of action of potential CysLTR ligands in the eye.


Subject(s)
Inflammation , Leukotrienes , Male , Adult , Female , Humans , Rats , Mice , Animals , Ligands , Rats, Sprague-Dawley , Leukotrienes/pharmacology
4.
Front Physiol ; 14: 1151495, 2023.
Article in English | MEDLINE | ID: mdl-37143930

ABSTRACT

Introduction: Pericytes (PCs) are specialized cells located abluminal of endothelial cells on capillaries, fulfilling numerous important functions. Their potential involvement in wound healing and scar formation is achieving increasing attention since years. Thus, many studies investigated the participation of PCs following brain and spinal cord (SC) injury, however, lacking in-depth analysis of lesioned optic nerve (ON) tissue. Further, due to the lack of a unique PC marker and uniform definition of PCs, contradicting results are published. Methods: In the present study the inducible PDGFRß-P2A-CreERT2-tdTomato lineage tracing reporter mouse was used to investigate the participation and trans-differentiation of endogenous PC-derived cells in an ON crush (ONC) injury model, analyzing five different post lesion time points up to 8 weeks post lesion. Results: PC-specific labeling of the reporter was evaluated and confirmed in the unlesioned ON of the reporter mouse. After ONC, we detected PC-derived tdTomato+ cells in the lesion, whereof the majority is not associated with vascular structures. The number of PC-derived tdTomato+ cells within the lesion increased over time, accounting for 60-90% of all PDGFRß+ cells in the lesion. The presence of PDGFRß+tdTomato- cells in the ON scar suggests the existence of fibrotic cell subpopulations of different origins. Discussion: Our results clearly demonstrate the presence of non-vascular associated tdTomato+ cells in the lesion core, indicating the participation of PC-derived cells in fibrotic scar formation following ONC. Thus, these PC-derived cells represent promising target cells for therapeutic treatment strategies to modulate fibrotic scar formation to improve axonal regeneration.

5.
Traffic ; 24(4): 177-189, 2023 04.
Article in English | MEDLINE | ID: mdl-36704929

ABSTRACT

The endosomal-lysosomal system is central for cell homeostasis and comprises the functions and dynamics of particular organelles including endosomes, lysosomes and autophagosomes. In previous studies, we found that the cysteinyl leukotriene receptor 1 (CysLTR1) regulates autophagy in the retinal pigment epithelial cell line ARPE-19 under basal cellular conditions. However, the underlying mechanism by which CysLTR1 regulates autophagy is unknown. Thus, in the present study, the effects of CysLTR1 inhibition on the endosomal-lysosomal system are analyzed in detail to identify the role of CysLTR1 in cell homeostasis and autophagy regulation. CysLTR1 inhibition in ARPE-19 cells by Zafirlukast, a CysLTR1 antagonist, depleted the lysosomal pool. Furthermore, CysLTR1 antagonization reduced endocytic capacity and internalization of epidermal growth factor and decreased levels of the transferrin receptor, CD71. Serum starvation abolished the effect of Zafirlukast on the autophagic flux, which identifies the endocytic regulation of serum components by CysLTR1 as an important autophagy-modulating mechanism. The role of CysLTR1 in inflammation and cell stress has been exceedingly studied, but its involvement in the endosomal-lysosomal pathway is largely unknown. This current study provides new insights into basal activity of CysLTR1 on cellular endocytosis and the subsequent impact on downstream processes like autophagy.


Subject(s)
Autophagy , Endosomes , Endosomes/metabolism , Lysosomes/metabolism , Epithelial Cells , Retinal Pigments/metabolism
6.
Curr Eye Res ; 47(4): 590-596, 2022 04.
Article in English | MEDLINE | ID: mdl-34758271

ABSTRACT

PURPOSE: Pericytes (PCs), located abluminal of endothelial cells on capillaries, are essential for vascular development and stability. They display a heterogeneous morphology depending on organ localization, differentiation state, and function. Consequently, PCs show a diverse gene expression profile, impeding the usage of a unique PC marker and therefore the distinct identification of PCs. Inducible reporter mouse models represent an important tool for investigating the fate of PCs under physiological and pathophysiological conditions. PC-specific expression efficiency of the fluorescence reporter tdTomato following tamoxifen induction was analyzed and compared in two inducible Cre recombinase-expressing mouse models under control of the NG2 and PDGFRb promotor. METHODS: The NG2-CreER™-tdTomato and the PDGFRb-P2A-CreERT2-tdTomato mice were treated with tamoxifen at three defining time points of retinal vascular development: post-natal days (P)5, P10/11/12, and P48/49/50/51. TdTomato reporter induction efficiency was determined by analyzing retinal whole mounts utilizing confocal microscopy, using the antibodies Anti-neural/glial antigen 2 (PCs), Anti-Collagen IV (basement membrane), and Anti-Glutamine Synthetase (Müller glial cells). RESULTS: Tamoxifen induction at the three different time points resulted in PC-specific expression of tdTomato in both reporter models. In the NG2-CreER™-tdTomato mouse, the induction efficiency ranged from 21.9 to 35.5%. In the PDGFRb-P2A-CreERT2-tdTomato mouse, an induction efficiency between 78.9 and 94.1% was achieved. TdTomato expression in the retina was restricted to PCs and vascular smooth muscle cells in the NG2-CreER™-tdTomato mouse, however, in the PDGFRb-P2A-CreERT2-tdTomato mouse, tdTomato was also expressed in Müller glial cells. CONCLUSION: Both reporter mouse models represent promising tools for fate-mapping studies of PCs. While the NG2-CreER™-tdTomato mouse reveals very specific labeling of PCs in the retina, its induction efficiency is lower compared to the PDGFRb-P2A-CreERT2-tdTomato mouse. Although the latter revealed a high percentage of tdTomato-positive PCs in the retina, additional labeling of Müller cells potentially hampers analysis of reporter-positive PCs.


Subject(s)
Pericytes , Receptor, Platelet-Derived Growth Factor beta , Animals , Endothelial Cells/metabolism , Integrases , Mice , Mice, Transgenic , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Retina/metabolism , Tamoxifen/pharmacology
7.
Aging (Albany NY) ; 13(24): 25670-25693, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34919533

ABSTRACT

Autophagy is an important cellular mechanism for maintaining cellular homeostasis, and its impairment correlates highly with age and age-related diseases. Retinal pigment epithelial (RPE) cells of the eye represent a crucial model for studying autophagy, as RPE functions and integrity are highly dependent on an efficient autophagic process. Cysteinyl leukotriene receptor 1 (CysLTR1) acts in immunoregulation and cellular stress responses and is a potential regulator of basal and adaptive autophagy. As basal autophagy is a dynamic process, the aim of this study was to define the role of CysLTR1 in autophagy regulation in a chronobiologic context using the ARPE-19 human RPE cell line. Effects of CysLTR1 inhibition on basal autophagic activity were analyzed at inactive/low and high lysosomal degradation activity with the antagonists zafirlukast (ZTK) and montelukast (MTK) at a dosage of 100 nM for 3 hours. Abundances of the autophagy markers LC3-II and SQSTM1 and LC3B particles were analyzed in the absence and presence of lysosomal inhibitors using western blot analysis and immunofluorescence microscopy. CysLTR1 antagonization revealed a biphasic effect of CysLTR1 on autophagosome formation and lysosomal degradation that depended on the autophagic activity of cells at treatment initiation. ZTK and MTK affected lysosomal degradation, but only ZTK regulated autophagosome formation. In addition, dexamethasone treatment and serum shock induced autophagy, which was repressed by CysLTR1 antagonization. As a newly identified autophagy modulator, CysLTR1 appears to be a key player in the chronobiological regulation of basal autophagy and adaptive autophagy in RPE cells.


Subject(s)
Autophagy/drug effects , Epithelial Cells/metabolism , Receptors, Leukotriene/drug effects , Retinal Pigment Epithelium/drug effects , Acetates/pharmacology , Blotting, Western , Cell Line , Cell Survival/drug effects , Chronobiology Phenomena , Cyclopropanes/pharmacology , Humans , Indoles/pharmacology , Leukotriene Antagonists/pharmacology , Oxidative Stress/physiology , Phenylcarbamates/pharmacology , Quinolines/pharmacology , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/metabolism , Sulfides/pharmacology , Sulfonamides/pharmacology
8.
Front Cell Dev Biol ; 9: 804105, 2021.
Article in English | MEDLINE | ID: mdl-35186954

ABSTRACT

In a variety of physiological and pathophysiological conditions, cells are exposed to acidic environments. Severe synovial fluid acidification also occurs in a progressive state of osteoarthritis (OA) affecting articular chondrocytes. In prior studies extracellular acidification has been shown to protect cells from apoptosis but the underlying mechanisms remain elusive. In the present study, we demonstrate that the inhibition of Cl- currents plays a significant role in the antiapoptotic effect of acidification in human articular chondrocytes. Drug-induced apoptosis was analyzed after exposure to staurosporine by caspase 3/7 activity and by annexin-V/7-actinomycin D (7-AAD) staining, followed by flow cytometry. Cell viability was assessed by resazurin, CellTiter-Glo and CellTiter-Fluor assays. Cl- currents and the mean cell volume were determined using the whole cell patch clamp technique and the Coulter method, respectively. The results reveal that in C28/I2 cells extracellular acidification decreases caspase 3/7 activity, enhances cell viability following staurosporine treatment and gradually deactivates the volume-sensitive outwardly rectifying (VSOR) Cl- current. Furthermore, the regulatory volume decrease (RVD) as well as the apoptotic volume decrease (ADV), which represents an early event during apoptosis, were absent under acidic conditions after hypotonicity-induced cell swelling and staurosporine-induced apoptosis, respectively. Like acidosis, the VSOR Cl- current inhibitor DIDS rescued chondrocytes from apoptotic cell death and suppressed AVD after induction of apoptosis with staurosporine. Similar to acidosis and DIDS, the VSOR channel blockers NPPB, niflumic acid (NFA) and DCPIB attenuated the staurosporine-induced AVD. NPPB and NFA also suppressed staurosporine-induced caspase 3/7 activation, while DCPIB and Tamoxifen showed cytotoxic effects per se. From these data, we conclude that the deactivation of VSOR Cl- currents impairs cell volume regulation under acidic conditions, which is likely to play an important role in the survivability of human articular chondrocytes.

9.
Oncotarget ; 8(42): 71817-71832, 2017 Sep 22.
Article in English | MEDLINE | ID: mdl-29069749

ABSTRACT

Di-peptides derived from the human host defense peptide lactoferricin were previously described to specifically interact with the negatively charged lipid phosphatidylserine exposed by cancer cells. In this study one further derivative, namely R-DIM-P-LF11-334 is shown to exhibit even increased cancer toxicity in vitro and in vivo while non-neoplastic cells are not harmed. In liposomal model systems composed of phosphatidylserine mimicking cancerous and phosphatidylcholine mimicking non-cancerous membranes the specific interaction with the cancer marker PS was confirmed by specific induction of membrane perturbation and permeabilization in presence of the peptide. In vitro studies with cell lines of human malignant melanoma, such as A375, or primary cells of human melanoma metastases to the brain, as MUG Mel1, and non-neoplastic human dermal fibroblasts NHDF revealed high cytotoxic effect of R-DIM-P-LF11-334 on melanoma cells of A375 and MUG Mel1, whereas only minor effect on the dermal fibroblasts NHDF was observed, yielding an about 20-fold killing-specificity for A375 and MUG-Mel1. The LC50 values for melanoma A375 and MUG Mel1 were about 10 µM. Analysis of secondary structure of the peptide revealed an increase in the proportion of ß-sheets exclusively in presence of the cancer mimic. Stability studies further indicated a potential adequate stability in blood or under stringent conditions. Importantly the cytotoxic effect on cancer cells was also proven in vivo in mouse xenografts of human melanoma, where peptide treatment induced strong tumor regression and in average a tumor area reduction of 85% compared to tumors of control mice without peptide treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...