Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Aging (Albany NY) ; 15(22): 12763-12779, 2023 11 28.
Article in English | MEDLINE | ID: mdl-38019471

ABSTRACT

Children from old fathers carry an increased risk for autism spectrum (ASD) and other neurodevelopmental disorders, which may at least partially be mediated by paternal age effects on the sperm epigenome. The brain enriched guanylate kinase associated (BEGAIN) protein is involved in protein-protein interactions at and transmission across synapses. Since several epigenome-wide methylation screens reported a paternal age effect on sperm BEGAIN methylation, here we confirmed a significant negative correlation between BEGAIN promoter methylation and paternal age, using more sensitive bisulfite pyrosequencing and a larger number of sperm samples. Paternal age-associated BEGAIN hypomethylation was also observed in fetal cord blood (FCB) of male but not of female offspring. There was no comparable maternal age effect on FCB methylation. In addition, we found a significant negative correlation between BEGAIN methylation and chronological age (ranging from 1 to 70 years) in peripheral blood samples of male but not of female donors. BEGAIN hypomethylation was more pronounced in male children, adolescents and adults suffering from ASD compared to controls. Both genetic variation (CC genotype of SNP rs7141087) and epigenetic factors may contribute to BEGAIN promoter hypomethylation. The age- and sex-specific BEGAIN methylation trajectories in the male germ line and somatic tissues, in particular the brain, support a role of this gene in ASD development.


Subject(s)
Autistic Disorder , Epigenesis, Genetic , Adolescent , Aged , Female , Humans , Male , Autistic Disorder/genetics , DNA Methylation , Fathers , Semen , Infant , Child, Preschool , Child , Young Adult , Adult , Middle Aged
2.
Aging (Albany NY) ; 15(5): 1257-1278, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36849136

ABSTRACT

Advanced paternal age is associated with increased risks for reproductive and offspring medical problems. Accumulating evidence suggests age-related changes in the sperm epigenome as one underlying mechanism. Using reduced representation bisulfite sequencing on 73 sperm samples of males attending a fertility center, we identified 1,162 (74%) regions which were significantly (FDR-adjusted) hypomethylated and 403 regions (26%) being hypermethylated with age. There were no significant correlations with paternal BMI, semen quality, or ART outcome. The majority (1,152 of 1,565; 74%) of age-related differentially methylated regions (ageDMRs) were located within genic regions, including 1,002 genes with symbols. Hypomethylated ageDMRs were closer to transcription start sites than hypermethylated DMRs, half of which reside in gene-distal regions. In this and conceptually related genome-wide studies, so far 2,355 genes have been reported with significant sperm ageDMRs, however most (90%) of them in only one study. The 241 genes which have been replicated at least once showed significant functional enrichments in 41 biological processes associated with development and the nervous system and in 10 cellular components associated with synapses and neurons. This supports the hypothesis that paternal age effects on the sperm methylome affect offspring behaviour and neurodevelopment. It is interesting to note that sperm ageDMRs were not randomly distributed throughout the human genome; chromosome 19 showed a highly significant twofold enrichment with sperm ageDMRs. Although the high gene density and CpG content have been conserved, the orthologous marmoset chromosome 22 did not appear to exhibit an increased regulatory potential by age-related DNA methylation changes.


Subject(s)
Epigenesis, Genetic , Epigenome , Humans , Male , Semen Analysis , Semen , DNA Methylation , Spermatozoa/metabolism , CpG Islands
3.
Cells ; 11(4)2022 02 19.
Article in English | MEDLINE | ID: mdl-35203380

ABSTRACT

A growing number of sperm methylome analyses have identified genomic loci that are susceptible to paternal age effects in a variety of mammalian species, including human, bovine, and mouse. However, there is little overlap between different data sets. Here, we studied whether or not paternal age effects on the sperm epigenome have been conserved in mammalian evolution and compared methylation patterns of orthologous regulatory regions (mainly gene promoters) containing both conserved and non-conserved CpG sites in 94 human, 36 bovine, and 94 mouse sperm samples, using bisulfite pyrosequencing. We discovered three (NFKB2, RASGEF1C, and RPL6) age-related differentially methylated regions (ageDMRs) in humans, four (CHD7, HDAC11, PAK1, and PTK2B) in bovines, and three (Def6, Nrxn2, and Tbx19) in mice. Remarkably, the identified sperm ageDMRs were all species-specific. Most ageDMRs were in genomic regions with medium methylation levels and large methylation variation. Orthologous regions in species not showing this age effect were either hypermethylated (>80%) or hypomethylated (<20%). In humans and mice, ageDMRs lost methylation, whereas bovine ageDMRs gained methylation with age. Our results are in line with the hypothesis that sperm ageDMRs are in regions under epigenomic evolution and may be part of an epigenetic mechanism(s) for lineage-specific environmental adaptations and provide a solid basis for studies on downstream effects in the genes analyzed here.


Subject(s)
DNA Methylation , Paternal Age , Spermatozoa , Animals , Cattle , DNA Methylation/genetics , Epigenesis, Genetic , Epigenome , Male , Mice , Spermatozoa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...