Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Brain Commun ; 6(2): fcae036, 2024.
Article in English | MEDLINE | ID: mdl-38444907

ABSTRACT

Although it is known that coronavirus disease 2019 can present with a range of neurological manifestations and in-hospital complications, sparse data exist on whether these initial neurological symptoms of coronavirus disease 2019 are closely associated with post-acute neurological sequelae of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2; PANSC) and whether female versus male sex impacts symptom resolution. In this international, multi-centre, prospective, observational study across 407 sites from 15 countries (30 January 2020 to 30 April 2022), we report the prevalence and risk factors of PANSC among hospitalized adults and investigate the differences between males and females on neurological symptom resolution over time. PANSC symptoms included altered consciousness/confusion, fatigue/malaise, anosmia, dysgeusia and muscle ache/joint pain, on which information was collected at index hospitalization and during follow-up assessments. The analysis considered a time to the resolution of individual and all neurological symptoms. The resulting times were modelled by Weibull regression, assuming mixed-case interval censoring, with sex and age included as covariates. The model results were summarized as cumulative probability functions and age-adjusted and sex-adjusted median times to resolution. We included 6862 hospitalized adults with coronavirus disease 2019, who had follow-up assessments. The median age of the participants was 57 years (39.2% females). Males and females had similar baseline characteristics, except that more males (versus females) were admitted to the intensive care unit (30.5 versus 20.3%) and received mechanical ventilation (17.2 versus 11.8%). Approximately 70% of patients had multiple neurological symptoms at the first follow-up (median = 102 days). Fatigue (49.9%) and myalgia/arthralgia (45.2%) were the most prevalent symptoms of PANSC at the initial follow-up. The reported prevalence in females was generally higher (versus males) for all symptoms. At 12 months, anosmia and dysgeusia were resolved in most patients, although fatigue, altered consciousness and myalgia remained unresolved in >10% of the cohort. Females had a longer time to the resolution (5.2 versus 3.4 months) of neurological symptoms at follow-up for those with more than one neurological symptom. In the multivariable analysis, males were associated with a shorter time to the resolution of symptoms (hazard ratio = 1.53; 95% confidence interval = 1.39-1.69). Intensive care unit admission was associated with a longer time to the resolution of symptoms (hazard ratio = 0.68; 95% confidence interval = 0.60-0.77). Post-discharge stroke was uncommon (0.3% in females and 0.5% in males). Despite the methodological challenges involved in the collection of survey data, this international multi-centre prospective cohort study demonstrated that PANSC following index hospitalization was high. Symptom prevalence was higher and took longer to resolve in females than in males. This supported the fact that while males were sicker during acute illness, females were disproportionately affected by PANSC.

2.
Neurocrit Care ; 40(1): 349-363, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37081276

ABSTRACT

BACKGROUND: Cardiac arrest (CA) is a sudden event that is often characterized by hypoxic-ischemic brain injury (HIBI), leading to significant mortality and long-term disability. Brain tissue oxygenation (PbtO2) is an invasive tool for monitoring brain oxygen tension, but it is not routinely used in patients with CA because of the invasiveness and the absence of high-quality data on its effect on outcome. We conducted a systematic review of experimental and clinical evidence to understand the role of PbtO2 in monitoring brain oxygenation in HIBI after CA and the effect of targeted PbtO2 therapy on outcomes. METHODS: The search was conducted using four search engines (PubMed, Scopus, Embase, and Cochrane), using the Boolean operator to combine mesh terms such as PbtO2, CA, and HIBI. RESULTS: Among 1,077 records, 22 studies were included (16 experimental studies and six clinical studies). In experimental studies, PbtO2 was mainly adopted to assess the impact of gas exchanges, drugs, or systemic maneuvers on brain oxygenation. In human studies, PbtO2 was rarely used to monitor the brain oxygen tension in patients with CA and HIBI. PbtO2 values had no clear association with patients' outcomes, but in the experimental studies, brain tissue hypoxia was associated with increased inflammation and neuronal damage. CONCLUSIONS: Further studies are needed to validate the effect and the threshold of PbtO2 associated with outcome in patients with CA, as well as to understand the physiological mechanisms influencing PbtO2 induced by gas exchanges, drug administration, and changes in body positioning after CA.


Subject(s)
Brain Injuries , Heart Arrest , Hypoxia-Ischemia, Brain , Humans , Brain , Oxygen , Brain Injuries/therapy , Heart Arrest/therapy , Heart Arrest/complications , Hypoxia-Ischemia, Brain/complications
4.
Crit Care Med ; 52(4): 637-648, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38059745

ABSTRACT

OBJECTIVES: This review aims to: 1) identify the key circuit and patient factors affecting systemic oxygenation, 2) summarize the literature reporting the association between hyperoxia and patient outcomes, and 3) provide a pragmatic approach to oxygen titration, in patients undergoing peripheral venoarterial extracorporeal membrane oxygenation (ECMO). DATA SOURCES: Searches were performed using PubMed, SCOPUS, Medline, and Google Scholar. STUDY SELECTION: All observational and interventional studies investigating the association between hyperoxia, and clinical outcomes were included, as well as guidelines from the Extracorporeal Life Support Organization. DATA EXTRACTION: Data from relevant literature was extracted, summarized, and integrated into a concise narrative review. For ease of reference a summary of relevant studies was also produced. DATA SYNTHESIS: The extracorporeal circuit and the native cardiorespiratory circuit both contribute to systemic oxygenation during venoarterial ECMO. The ECMO circuit's contribution to systemic oxygenation is, in practice, largely determined by the ECMO blood flow, whereas the native component of systemic oxygenation derives from native cardiac output and residual respiratory function. Interactions between ECMO outflow and native cardiac output (as in differential hypoxia), the presence of respiratory support, and physiologic parameters affecting blood oxygen carriage also modulate overall oxygen exposure during venoarterial ECMO. Physiologically those requiring venoarterial ECMO are prone to hyperoxia. Hyperoxia has a variety of definitions, most commonly Pa o2 greater than 150 mm Hg. Severe hypoxia (Pa o2 > 300 mm Hg) is common, seen in 20%. Early severe hyperoxia, as well as cumulative hyperoxia exposure was associated with in-hospital mortality, even after adjustment for disease severity in both venoarterial ECMO and extracorporeal cardiopulmonary resuscitation. A pragmatic approach to oxygenation during peripheral venoarterial ECMO involves targeting a right radial oxygen saturation target of 94-98%, and in selected patients, titration of the fraction of oxygen in the mixture via the air-oxygen blender to target postoxygenator Pa o2 of 150-300 mm Hg. CONCLUSIONS: Hyperoxia results from a range of ECMO circuit and patient-related factors. It is common during peripheral venoarterial ECMO, and its presence is associated with poor outcome. A pragmatic approach that avoids hyperoxia, while also preventing hypoxia has been described for patients receiving peripheral venoarterial ECMO.


Subject(s)
Extracorporeal Membrane Oxygenation , Hyperoxia , Respiratory Insufficiency , Humans , Oxygen , Extracorporeal Membrane Oxygenation/methods , Hypoxia , Respiration , Retrospective Studies
5.
Crit Care Med ; 52(3): 452-463, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37921513

ABSTRACT

OBJECTIVES: Although delirium is well described in patients with sepsis, there are limited data on other neurologic complications. We aimed to systematically review the prevalence, neuromonitoring tools, and neurocognitive outcomes in sepsis patients with neurologic complications. DATA SOURCES: MEDLINE and six other databases (Embase, Web of Science, Cochrane CENTRAL, and ClinicalTrials.gov ) were searched through January 2023. STUDY SELECTION: Studies of adult patients with sepsis reported neurologic complications, use of neuromonitoring tools, neuropathology, and cognitive outcomes. DATA EXTRACTION: Two independent reviewers extracted the data. Random-effect meta-analyses were used to pool data. DATA SYNTHESIS: Seventy-four studies ( n = 146,855) were included. Neurologic complications were reported in 38 studies ( n = 142,193) including septic encephalopathy (36%, 95% CI, 27-46%; I 2 = 99%), ischemic stroke (5%, 95% CI, 2.1-11.5; I 2 = 99%), intracranial hemorrhage (2%, 95% CI, 1.0-4.4%; I 2 = 96%), seizures (1%, 95% CI, 0.2-7%; I 2 = 96%), posterior reversible encephalopathy syndrome (9%), and hypoxic-ischemic brain injury (7%). In the meta-regression analysis, pulmonary infection, sepsis induced by a gram-positive organism, higher sequential organ failure assessment score, acute physiology and chronic health evaluation II score at admission, and longer ICU length of stay were associated with higher risk of developing septic encephalopathy. Three studies ( n = 159) reported postmortem neuropathological findings, acute brain injury was noted in 47% of patients. Twenty-six studies ( n = 1,358) reported the use of neuromonitoring tools, electroencephalogram was the most used tool for seizure detection. Transcranial Doppler and near infrared spectroscopy were used for monitoring cerebral hemodynamic changes to detect early ischemia. Six studies reported cognitive outcomes ( n = 415) up to 12 months postdischarge and cognitive impairment (≥ one domain) was reported in 30%. CONCLUSIONS: In-hospital neurologic complications are common in patients with sepsis. However, the mechanism and timing of those sepsis-associated complications are poorly understood and there are limited data on standardized neuromonitoring in this population.


Subject(s)
Posterior Leukoencephalopathy Syndrome , Sepsis , Adult , Humans , Aftercare , Patient Discharge , Sepsis/complications , Sepsis/epidemiology , Hospitals
6.
Acute Crit Care ; 38(4): 389-398, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38052506

ABSTRACT

Extracorporeal membrane oxygenation (ECMO) is a life-saving intervention for patients with refractory cardiorespiratory failure. Despite its benefits, ECMO carries a significant risk of neurological complications, including acute brain injury (ABI). Although standardized neuromonitoring and neurological care have been shown to improve early detection of ABI, the inability to perform neuroimaging in a timely manner is a major limitation in the accurate diagnosis of neurological complications. Therefore, blood-based biomarkers capable of detecting ongoing brain injury at the bedside are of great clinical significance. This review aims to provide a concise review of the current literature on plasma biomarkers for ABI in patients on ECMO support.

8.
Parkinsonism Relat Disord ; 112: 105448, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37236833

ABSTRACT

Parkinson's disease is an increasingly prevalent condition that involves the marked loss of dopaminergic neurons in the substantia nigra pars compacta. These neurons pigmented with neuromelanin along with other regions of the brain are almost exclusively victims of neurodegeneration in the disease. The link between neuromelanin and Parkinson's disease has been widely studied for decades. While many studies have outlined the pigment's neuroprotective function as a potent free radical scavenger, antioxidant, and ion-chelator, it has also been observed to play a role in cell death due to mitochondrial dysfunction and oxidative stress, especially in the parkinsonian disease state. This is due to the damaging effects of neuromelanin precursors, neuromelanin-related ion dysregulation and intra- and extraneuronal neuromelanin accumulation. Current and emerging therapeutic endeavours guided by these pathological processes may include antioxidant therapy, proteostasis enhancement, ion chelation and neuromelanin-targeted immunotherapy to prevent the accumulation, formation and effects of neuromelanin and oxidative neuromelanin precursors. Some of these therapeutic strategies are already in nascent stages, while others have produced mixed results in clinical trials. This review aims to provide an update on how neuromelanin and neuromelanin-related substances may be linked to the pathogenesis of Parkinson's disease and how future therapeutic strategies may be able to hamper or prevent neuromelanin-related pathological processes and ultimately modify disease progression in Parkinson's.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/etiology , Parkinson Disease/therapy , Parkinson Disease/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Substantia Nigra/pathology , Melanins/metabolism , Dopaminergic Neurons/pathology
9.
Crit Care ; 27(1): 132, 2023 04 01.
Article in English | MEDLINE | ID: mdl-37005666

ABSTRACT

BACKGROUND: Stroke patients requiring mechanical ventilation often have a poor prognosis. The optimal timing of tracheostomy and its impact on mortality in stroke patients remains uncertain. We performed a systematic review and meta-analysis of tracheostomy timing and its association with reported all-cause overall mortality. Secondary outcomes were the effect of tracheostomy timing on neurological outcome (modified Rankin Scale, mRS), hospital length of stay (LOS), and intensive care unit (ICU) LOS. METHODS: We searched 5 databases for entries related to acute stroke and tracheostomy from inception to 25 November 2022. We adhered to PRISMA guidance for reporting systematic reviews and meta-analyses. Selected studies included (1) ICU-admitted patients who had stroke (either acute ischaemic stroke, AIS or intracerebral haemorrhage, ICH) and received a tracheostomy (with known timing) during their stay and (2) > 20 tracheotomised. Studies primarily reporting sub-arachnoid haemorrhage (SAH) were excluded. Where this was not possible, adjusted meta-analysis and meta-regression with study-level moderators were performed. Tracheostomy timing was analysed continuously and categorically, where early (< 5 days from initiation of mechanical ventilation to tracheostomy) and late (> 10 days) timing was defined per the protocol of SETPOINT2, the largest and most recent randomised controlled trial on tracheostomy timing in stroke patients. RESULTS: Thirteen studies involving 17,346 patients (mean age = 59.8 years, female 44%) met the inclusion criteria. ICH, AIS, and SAH comprised 83%, 12%, and 5% of known strokes, respectively. The mean time to tracheostomy was 9.7 days. Overall reported all-cause mortality (adjusted for follow-up) was 15.7%. One in five patients had good neurological outcome (mRS 0-3; median follow-up duration was 180 days). Overall, patients were ventilated for approximately 12 days and had an ICU LOS of 16 days and a hospital LOS of 28 days. A meta-regression analysis using tracheostomy time as a continuous variable showed no statistically significant association between tracheostomy timing and mortality (ß = - 0.3, 95% CI = - 2.3 to 1.74, p = 0.8). Early tracheostomy conferred no mortality benefit when compared to late tracheostomy (7.8% vs. 16.4%, p = 0.7). Tracheostomy timing was not associated with secondary outcomes (good neurological outcome, ICU LOS and hospital LOS). CONCLUSIONS: In this meta-analysis of over 17,000 critically ill stroke patients, the timing of tracheostomy was not associated with mortality, neurological outcomes, or ICU/hospital LOS. TRIAL REGISTRATION: PROSPERO-CRD42022351732 registered on 17th of August 2022.


Subject(s)
Brain Ischemia , Stroke , Humans , Female , Middle Aged , Stroke/surgery , Critical Illness , Cerebral Hemorrhage , Critical Care , Intensive Care Units , Respiration, Artificial , Length of Stay
10.
Cells ; 12(5)2023 03 06.
Article in English | MEDLINE | ID: mdl-36899952

ABSTRACT

The development of long-term symptoms of coronavirus disease 2019 (COVID-19) more than four weeks after primary infection, termed "long COVID" or post-acute sequela of COVID-19 (PASC), can implicate persistent neurological complications in up to one third of patients and present as fatigue, "brain fog", headaches, cognitive impairment, dysautonomia, neuropsychiatric symptoms, anosmia, hypogeusia, and peripheral neuropathy. Pathogenic mechanisms of these symptoms of long COVID remain largely unclear; however, several hypotheses implicate both nervous system and systemic pathogenic mechanisms such as SARS-CoV2 viral persistence and neuroinvasion, abnormal immunological response, autoimmunity, coagulopathies, and endotheliopathy. Outside of the CNS, SARS-CoV-2 can invade the support and stem cells of the olfactory epithelium leading to persistent alterations to olfactory function. SARS-CoV-2 infection may induce abnormalities in innate and adaptive immunity including monocyte expansion, T-cell exhaustion, and prolonged cytokine release, which may cause neuroinflammatory responses and microglia activation, white matter abnormalities, and microvascular changes. Additionally, microvascular clot formation can occlude capillaries and endotheliopathy, due to SARS-CoV-2 protease activity and complement activation, can contribute to hypoxic neuronal injury and blood-brain barrier dysfunction, respectively. Current therapeutics target pathological mechanisms by employing antivirals, decreasing inflammation, and promoting olfactory epithelium regeneration. Thus, from laboratory evidence and clinical trials in the literature, we sought to synthesize the pathophysiological pathways underlying neurological symptoms of long COVID and potential therapeutics.


Subject(s)
COVID-19 , Nervous System Diseases , Humans , COVID-19/complications , SARS-CoV-2 , RNA, Viral , Nervous System Diseases/etiology , Inflammation/complications , Post-Acute COVID-19 Syndrome
11.
J Heart Lung Transplant ; 42(4): 503-511, 2023 04.
Article in English | MEDLINE | ID: mdl-36435686

ABSTRACT

BACKGROUND: Acute brain injury (ABI) remains common after extracorporeal cardiopulmonary resuscitation (ECPR). Using a large international multicenter cohort, we investigated the impact of peri-cannulation arterial oxygen (PaO2) and carbon dioxide (PaCO2) on ABI occurrence. METHODS: We retrospectively analyzed adult (≥18 years old) ECPR patients in the Extracorporeal Life Support Organization registry from 1/2009 through 12/2020. Composite ABI included ischemic stroke, intracranial hemorrhage (ICH), seizures, and brain death. The registry collects 2 blood gas data pre- (6 hours) and post- (24 hours) cannulation. Blood gas parameters were classified as: hypoxia (<60mm Hg), normoxia (60-119mm Hg), and mild (120-199mm Hg), moderate (200-299mm Hg), and severe hyperoxia (≥300mm Hg); hypocarbia (<35mm Hg), normocarbia (35-44mm Hg), mild (45-54mm Hg) and severe hypercarbia (≥55mm Hg). Missing values were handled using multiple imputation. Multivariable logistic regression analysis was used to assess the relationship of PaO2 and PaCO2 with ABI. RESULTS: Of 3,125 patients with ECPR intervention (median age=58, 69% male), 488 (16%) experienced ABI (7% ischemic stroke; 3% ICH). In multivariable analysis, on-ECMO moderate (aOR=1.42, 95%CI: 1.02-1.97) and severe hyperoxia (aOR=1.59, 95%CI: 1.20-2.10) were associated with composite ABI. Additionally, severe hyperoxia was associated with ischemic stroke (aOR=1.63, 95%CI: 1.11-2.40), ICH (aOR=1.92, 95%CI: 1.08-3.40), and in-hospital mortality (aOR=1.58, 95%CI: 1.21-2.06). Mild hypercarbia pre-ECMO was protective of composite ABI (aOR=0.61, 95%CI: 0.44-0.84) and ischemic stroke (aOR=0.56, 95%CI: 0.35-0.89). CONCLUSIONS: Early severe hyperoxia (≥300mm Hg) on ECMO was a significant risk factor for ABI and mortality. Careful consideration should be given in early oxygen delivery in ECPR patients who are at risk of reperfusion injury.


Subject(s)
Brain Injuries , Carbon Dioxide , Cardiopulmonary Resuscitation , Extracorporeal Membrane Oxygenation , Hyperoxia , Oxygen , Female , Humans , Male , Middle Aged , Brain Injuries/blood , Brain Injuries/epidemiology , Brain Injuries/etiology , Carbon Dioxide/blood , Cardiopulmonary Resuscitation/adverse effects , Cardiopulmonary Resuscitation/statistics & numerical data , Extracorporeal Membrane Oxygenation/adverse effects , Extracorporeal Membrane Oxygenation/statistics & numerical data , Hyperoxia/blood , Hyperoxia/epidemiology , Hyperoxia/etiology , Intracranial Hemorrhages/blood , Intracranial Hemorrhages/epidemiology , Intracranial Hemorrhages/etiology , Ischemic Stroke/blood , Ischemic Stroke/epidemiology , Ischemic Stroke/etiology , Oxygen/blood , Registries/statistics & numerical data , Retrospective Studies , United States/epidemiology
12.
J Neurosurg Anesthesiol ; 35(4): 423-428, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-35695738

ABSTRACT

INTRODUCTION: Noninvasive neuromonitoring could be a valuable option for bedside assessment of cerebral dysfunction in patients with coronavirus disease-2019 (COVID-19) admitted to intensive care units (ICUs). This systematic review aims to investigate the use of noninvasive multimodal neuromonitoring in critically ill adult patients with COVID-19 infection. METHODS: MEDLINE/PubMed, Scopus, Cochrane, and EMBASE databases were searched for studies investigating noninvasive neuromonitoring in patients with COVID-19 admitted to ICUs. The monitoring included transcranial Doppler ultrasonography (TCD), the Brain4care Corp. cerebral compliance monitor (B4C), optic nerve sheath diameter (ONSD), near infrared spectroscopy, automated pupillometry, and electroencephalography (EEG). RESULTS: Thirty-two studies that investigated noninvasive neuromonitoring techniques in patients with COVID-19 in the ICU were identified from a systematic search of 7001 articles: 1 study investigating TCD, ONSD and pupillometry; 2 studies investigating the B4C device and TCD; 3 studies investigating near infrared spectroscopy and TCD; 4 studies investigating TCD; 1 case series investigating pupillometry, and 21 studies investigating EEG. One hundred and nineteen patients underwent TCD monitoring, 47 pupillometry, 49 ONSD assessment, 50 compliance monitoring with the B4C device, and 900 EEG monitoring. Alterations in cerebral hemodynamics, brain compliance, brain oxygenation, pupillary response, and brain electrophysiological activity were common in patients with COVID-19 admitted to the ICU; these abnormalities were not clearly associated with worse outcome or the development of new neurological complications. CONCLUSIONS: The use of noninvasive multimodal neuromonitoring in critically ill COVID-19 patients could be considered to facilitate the detection of neurological derangements. Determining whether such findings allow earlier detection of neurological complications or guide appropriate therapy requires additional studies.


Subject(s)
COVID-19 , Critical Illness , Humans , Adult , Ultrasonography, Doppler, Transcranial , Monitoring, Physiologic , Brain
13.
Brain ; 146(4): 1648-1661, 2023 04 19.
Article in English | MEDLINE | ID: mdl-36087305

ABSTRACT

Different neurological manifestations of coronavirus disease 2019 (COVID-19) in adults and children and their impact have not been well characterized. We aimed to determine the prevalence of neurological manifestations and in-hospital complications among hospitalized COVID-19 patients and ascertain differences between adults and children. We conducted a prospective multicentre observational study using the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) cohort across 1507 sites worldwide from 30 January 2020 to 25 May 2021. Analyses of neurological manifestations and neurological complications considered unadjusted prevalence estimates for predefined patient subgroups, and adjusted estimates as a function of patient age and time of hospitalization using generalized linear models. Overall, 161 239 patients (158 267 adults; 2972 children) hospitalized with COVID-19 and assessed for neurological manifestations and complications were included. In adults and children, the most frequent neurological manifestations at admission were fatigue (adults: 37.4%; children: 20.4%), altered consciousness (20.9%; 6.8%), myalgia (16.9%; 7.6%), dysgeusia (7.4%; 1.9%), anosmia (6.0%; 2.2%) and seizure (1.1%; 5.2%). In adults, the most frequent in-hospital neurological complications were stroke (1.5%), seizure (1%) and CNS infection (0.2%). Each occurred more frequently in intensive care unit (ICU) than in non-ICU patients. In children, seizure was the only neurological complication to occur more frequently in ICU versus non-ICU (7.1% versus 2.3%, P < 0.001). Stroke prevalence increased with increasing age, while CNS infection and seizure steadily decreased with age. There was a dramatic decrease in stroke over time during the pandemic. Hypertension, chronic neurological disease and the use of extracorporeal membrane oxygenation were associated with increased risk of stroke. Altered consciousness was associated with CNS infection, seizure and stroke. All in-hospital neurological complications were associated with increased odds of death. The likelihood of death rose with increasing age, especially after 25 years of age. In conclusion, adults and children have different neurological manifestations and in-hospital complications associated with COVID-19. Stroke risk increased with increasing age, while CNS infection and seizure risk decreased with age.


Subject(s)
COVID-19 , Stroke , Humans , Adult , Child , COVID-19/complications , COVID-19/epidemiology , SARS-CoV-2 , Stroke/complications , Seizures/epidemiology , Seizures/etiology , Myalgia
15.
Front Med (Lausanne) ; 9: 999885, 2022.
Article in English | MEDLINE | ID: mdl-36275802

ABSTRACT

Acute respiratory distress syndrome (ARDS) is commonly seen in patients with acute brain injury (ABI), with prevalence being as high as 35%. These patients often have additional risk factors for ARDS compared to general critical care patients. Lung injury in ABI occurs secondary to catecholamine surge and neuro-inflammatory processes. ARDS patients benefit from lung protective ventilation using low tidal volumes, permissive hypercapnia, high PEEP, and lower PO2 goals. These strategies can often be detrimental in ABI given the risk of brain hypoxia and elevation of intracranial pressure (ICP). While lung protective ventilation is not contraindicated in ABI, special consideration is warranted to make sure it does not interfere with neurological recovery. Permissive hypercapnia with low lung volumes can be utilized in patients without any ICP issues but those with ICP elevations can benefit from continuous ICP monitoring to personalize PCO2 goals. Hypoxia leads to poor outcomes in ABI, hence the ARDSnet protocol of lower PO2 target (55-80 mmHg) might not be the best practice in patients with concomitant ARDS and ABI. High-normal PO2 levels are reasonable in target in severe ABI with ARDS. Studies have shown that PEEP up to 12 mmHg does not cause significant elevations in ICP and is safe to use in ABI though mean arterial pressure, respiratory system compliance, and cerebral perfusion pressure should be closely monitored. Given most trials investigating therapeutics in ARDS have excluded ABI patients, focused research is needed in the field to advance the care of these patients using evidence-based medicine.

16.
Br J Anaesth ; 129(5): 679-692, 2022 11.
Article in English | MEDLINE | ID: mdl-36182551

ABSTRACT

BACKGROUND: We performed a systematic review of mechanically ventilated patients with COVID-19, which analysed the effect of tracheostomy timing and technique (surgical vs percutaneous) on mortality. Secondary outcomes included intensive care unit (ICU) and hospital length of stay (LOS), decannulation from tracheostomy, duration of mechanical ventilation, and complications. METHODS: Four databases were screened between January 1, 2020 and January 10, 2022 (PubMed, Embase, Scopus, and Cochrane). Papers were selected according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and the Population or Problem, Intervention or exposure, Comparison, and Outcome (PICO) guidelines. Meta-analysis and meta-regression for main outcomes were performed. RESULTS: The search yielded 9024 potentially relevant studies, of which 47 (n=5268 patients) were included. High levels of between-study heterogeneity were observed across study outcomes. The pooled mean tracheostomy timing was 16.5 days (95% confidence interval [CI]: 14.7-18.4; I2=99.6%). Pooled mortality was 22.1% (95% CI: 18.7-25.5; I2=89.0%). Meta-regression did not show significant associations between mortality and tracheostomy timing, mechanical ventilation duration, time to decannulation, and tracheostomy technique. Pooled mean estimates for ICU and hospital LOS were 29.6 (95% CI: 24.0-35.2; I2=98.6%) and 38.8 (95% CI: 32.1-45.6; I2=95.7%) days, both associated with mechanical ventilation duration (coefficient 0.8 [95% CI: 0.2-1.4], P=0.02 and 0.9 [95% CI: 0.4-1.4], P=0.01, respectively) but not tracheostomy timing. Data were insufficient to assess tracheostomy technique on LOS. Duration of mechanical ventilation was 23.4 days (95% CI: 19.2-27.7; I2=99.3%), not associated with tracheostomy timing. Data were insufficient to assess the effect of tracheostomy technique on mechanical ventilation duration. Time to decannulation was 23.8 days (95% CI: 19.7-27.8; I2=98.7%), not influenced by tracheostomy timing or technique. The most common complications were stoma infection, ulcers or necrosis, and bleeding. CONCLUSIONS: In patients with COVID-19 requiring tracheostomy, the timing and technique of tracheostomy did not clearly impact on patient outcomes. SYSTEMATIC REVIEW PROTOCOL: PROSPERO CRD42021272220.


Subject(s)
COVID-19 , Critical Illness , Humans , Critical Illness/therapy , Time Factors , Tracheostomy/methods , Respiration, Artificial/methods , Length of Stay
17.
Front Med (Lausanne) ; 9: 930217, 2022.
Article in English | MEDLINE | ID: mdl-35935771

ABSTRACT

Introduction: Neurological manifestations and complications in coronavirus disease-2019 (COVID-19) patients are frequent. Prior studies suggested a possible association between neurological complications and fatal outcome, as well as the existence of potential modifiable risk factors associated to their occurrence. Therefore, more information is needed regarding the incidence and type of neurological complications, risk factors, and associated outcomes in COVID-19. Methods: This is a pre-planned secondary analysis of the international multicenter observational study of the COVID-19 Critical Care Consortium (which collected data both retrospectively and prospectively from the beginning of COVID-19 pandemic) with the aim to describe neurological complications in critically ill COVID-19 patients and to assess the associated risk factors, and outcomes. Adult patients with confirmed COVID-19, admitted to Intensive Care Unit (ICU) will be considered for this analysis. Data collected in the COVID-19 Critical Care Consortium study includes patients' pre-admission characteristics, comorbidities, severity status, and type and severity of neurological complications. In-hospital mortality and neurological outcome were collected at discharge from ICU, and at 28-days. Ethics and Dissemination: The COVID-19 Critical Care Consortium main study and its amendments have been approved by the Regional Ethics Committee of participating sites. No further approval is required for this secondary analysis. Trial Registration Number: ACTRN12620000421932.

18.
Front Neurol ; 13: 814405, 2022.
Article in English | MEDLINE | ID: mdl-35493827

ABSTRACT

Introduction: Neurological complications are frequent in patients with coronavirus disease-2019 (COVID-19). The use of non-invasive neuromonitoring in subjects without primary brain injury but with potential neurological derangement is gaining attention outside the intensive care unit (ICU). This systematic review and meta-analysis investigates the use of non-invasive multimodal neuromonitoring of the brain in non-critically ill patients with COVID-19 outside the ICU and quantifies the prevalence of abnormal neuromonitoring findings in this population. Methods: A structured literature search was performed in MEDLINE/PubMed, Scopus, Cochrane, and EMBASE to investigate the use of non-invasive neuromonitoring tools, including transcranial doppler (TCD); optic nerve sheath diameter (ONSD); near-infrared spectroscopy (NIRS); pupillometry; and electroencephalography (EEG) inpatients with COVID-19 outside the ICU. The proportion of non-ICU patients with CVOID-19 and a particular neurological feature at neuromonitoring at the study time was defined as prevalence. Results: A total of 6,593 records were identified through literature searching. Twenty-one studies were finally selected, comprising 368 non-ICU patients, of whom 97 were considered for the prevalence of meta-analysis. The pooled prevalence of electroencephalographic seizures, periodic and rhythmic patterns, slow background abnormalities, and abnormal background on EEG was.17 (95% CI 0.04-0.29), 0.42 (95% CI 0.01-0.82), 0.92 (95% CI 0.83-1.01), and.95 (95% CI 0.088-1.09), respectively. No studies investigating NIRS and ONSD outside the ICU were found. The pooled prevalence for abnormal neuromonitoring findings detected using the TCD and pupillometry were incomputable due to insufficient data. Conclusions: Neuromonitoring tools are non-invasive, less expensive, safe, and bedside available tools with a great potential for both diagnosis and monitoring of patients with COVID-19 at risk of brain derangements. However, extensive literature searching reveals that they are rarely used outside critical care settings.Systematic Review Registration: www.crd.york.ac.uk/prospero/display_record.php?RecordID=265617, identifier: CRD42021265617.

19.
J Neurol Sci ; 434: 120162, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35121209

ABSTRACT

IMPORTANCE: Neurological and neuropsychiatric symptoms that persist or develop three months after the onset of COVID-19 pose a significant threat to the global healthcare system. These symptoms are yet to be synthesized and quantified via meta-analysis. OBJECTIVE: To determine the prevalence of neurological and neuropsychiatric symptoms reported 12 weeks (3 months) or more after acute COVID-19 onset in adults. DATA SOURCES: A systematic search of PubMed, EMBASE, Web of Science, Google Scholar and Scopus was conducted for studies published between January 1st, 2020 and August 1st, 2021. The systematic review was guided by Preferred Reporting Items for Systematic Review and Meta-Analyses. STUDY SELECTION: Studies were included if the length of follow-up satisfied the National Institute for Healthcare Excellence (NICE) definition of post-COVID-19 syndrome (symptoms that develop or persist ≥3 months after the onset of COVID-19). Additional criteria included the reporting of neurological or neuropsychiatric symptoms in individuals with COVID-19. DATA EXTRACTION AND SYNTHESIS: Two authors independently extracted data on patient characteristics, hospital and/or ICU admission, acute-phase COVID-19 symptoms, length of follow-up, and neurological and neuropsychiatric symptoms. MAIN OUTCOME(S) AND MEASURE(S): The primary outcome was the prevalence of neurological and neuropsychiatric symptoms reported ≥3 months post onset of COVID-19. We also compared post-COVID-19 syndrome in hospitalised vs. non-hospitalised patients, with vs. without ICU admission during the acute phase of infection, and with mid-term (3 to 6 months) and long-term (>6 months) follow-up. RESULTS: Of 1458 articles, 19 studies, encompassing a total of 11,324 patients, were analysed. Overall prevalence for neurological post-COVID-19 symptoms were: fatigue (37%, 95% CI: 24%-50%), brain fog (32%, 9%-55%), memory issues (27%, 18%-36%), attention disorder (22%, 10%-34%), myalgia (18%, 4%-32%), anosmia (12%, 7%-17%), dysgeusia (11%, 4%-17%) and headache (10%, 1%-21%). Neuropsychiatric conditions included sleep disturbances (31%, 18%-43%), anxiety (23%, 13%-33%) and depression (12%, 7%-21%). Neuropsychiatric symptoms substantially increased in prevalence between mid- and long-term follow-up. Compared to non-hospitalised patients, patients hospitalised for acute COVID-19 had reduced frequency of anosmia, anxiety, depression, dysgeusia, fatigue, headache, myalgia, and sleep disturbance at three (or more) months post-infection. Conversely, hospital admission was associated with higher frequency of memory issues (OR: 1.9, 95% CI: 1.4-2.3). Cohorts with >20% of patients admitted to the ICU during acute COVID-19 experienced higher prevalence of fatigue, anxiety, depression, and sleep disturbances than cohorts with <20% of ICU admission. CONCLUSIONS AND RELEVANCE: Fatigue, cognitive dysfunction (brain fog, memory issues, attention disorder) and sleep disturbances appear to be key features of post-COVID-19 syndrome. Psychiatric manifestations (sleep disturbances, anxiety, and depression) are common and increase significantly in prevalence over time. Randomised controlled trials are necessary to develop intervention strategy to reduce disease burden.


Subject(s)
COVID-19 , Adult , Anxiety/epidemiology , Anxiety/etiology , Anxiety/psychology , COVID-19/complications , COVID-19/epidemiology , Fatigue/diagnosis , Headache/epidemiology , Humans , Post-Acute COVID-19 Syndrome
20.
Heart Lung Circ ; 31(2): 292-298, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34756659

ABSTRACT

BACKGROUND: Patients with Coronavirus disease 2019 (COVID-19)-related acute respiratory disease (ARDS) increasingly receive extracorporeal membrane oxygenation (ECMO) support. While ECMO has been shown to increase risk of stroke, few studies have examined this association in COVID-19 patients. OBJECTIVE: We conducted a systematic review to characterise neurological events during ECMO support in COVID-19 patients. DESIGN: Systematic review of cohort and large case series of COVID-19 patients who received ECMO support. DATA SOURCES: Studies retrieved from PubMed, EMBASE, Cochrane, Cochrane COVID-19 Study Register, Web of Science, Scopus, Clinicaltrials.gov, and medRχiv from inception to November 11, 2020. ELIGIBILITY CRITERIA: Inclusion criteria were a) Adult population (>18 year old); b) Positive PCR test for SARS-CoV-2 with active COVID-19 disease; c) ECMO therapy due to COVID-19 ARDS; and d) Neurological events and outcome described while on ECMO support. We excluded articles when no details of neurologic events were available. RESULTS: 1,322 patients from 12 case series and retrospective cohort studies were included in our study. The median age was 49.2, and 75% (n=985) of the patients were male. Diabetes mellitus and dyslipidaemia were the most common comorbidities (24% and 20%, respectively). Most (95%, n=1,241) patients were on venovenous ECMO with a median P:F ratio at the time of ECMO cannulation of 69.1. The prevalence of intracranial haemorrhage (ICH), ischaemic stroke, and hypoxic ischaemic brain injury (HIBI) was 5.9% (n=78), 1.1% (n=15), and 0.3% (n=4), respectively. The overall mortality of the 1,296 ECMO patients in the 10 studies that reported death was 36% (n=477), and the mortality of the subset of patients who had a neurological event was 92%. CONCLUSIONS: Neurological injury is a concern for COVID-19 patients who receive ECMO. Further research is required to explore how neuromonitoring protocols can inform tailored anticoagulation management and improve survival in COVID-19 patients with ECMO support.


Subject(s)
Brain Ischemia , COVID-19 , Extracorporeal Membrane Oxygenation , Stroke , Adolescent , Adult , Extracorporeal Membrane Oxygenation/adverse effects , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2 , Stroke/epidemiology , Stroke/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...