Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Science ; 329(5998): 1513-6, 2010 Sep 17.
Article in English | MEDLINE | ID: mdl-20847268

ABSTRACT

The Amazon is one of the few continental regions where atmospheric aerosol particles and their effects on climate are not dominated by anthropogenic sources. During the wet season, the ambient conditions approach those of the pristine pre-industrial era. We show that the fine submicrometer particles accounting for most cloud condensation nuclei are predominantly composed of secondary organic material formed by oxidation of gaseous biogenic precursors. Supermicrometer particles, which are relevant as ice nuclei, consist mostly of primary biological material directly released from rainforest biota. The Amazon Basin appears to be a biogeochemical reactor, in which the biosphere and atmospheric photochemistry produce nuclei for clouds and precipitation sustaining the hydrological cycle. The prevailing regime of aerosol-cloud interactions in this natural environment is distinctly different from polluted regions.

2.
Proc Natl Acad Sci U S A ; 107(25): 11217-22, 2010 Jun 22.
Article in English | MEDLINE | ID: mdl-20534566

ABSTRACT

Knowledge of cloud and precipitation formation processes remains incomplete, yet global precipitation is predominantly produced by clouds containing the ice phase. Ice first forms in clouds warmer than -36 degrees C on particles termed ice nuclei. We combine observations from field studies over a 14-year period, from a variety of locations around the globe, to show that the concentrations of ice nuclei active in mixed-phase cloud conditions can be related to temperature and the number concentrations of particles larger than 0.5 microm in diameter. This new relationship reduces unexplained variability in ice nuclei concentrations at a given temperature from approximately 10(3) to less than a factor of 10, with the remaining variability apparently due to variations in aerosol chemical composition or other factors. When implemented in a global climate model, the new parameterization strongly alters cloud liquid and ice water distributions compared to the simple, temperature-only parameterizations currently widely used. The revised treatment indicates a global net cloud radiative forcing increase of approximately 1 W m(-2) for each order of magnitude increase in ice nuclei concentrations, demonstrating the strong sensitivity of climate simulations to assumptions regarding the initiation of cloud glaciation.


Subject(s)
Atmosphere , Climate , Water/chemistry , Aerosols , Computer Simulation , Databases, Factual , Ice , Models, Theoretical , Particle Size , Physics/methods , Reproducibility of Results , Temperature
3.
Proc Natl Acad Sci U S A ; 100(25): 14655-60, 2003 Dec 09.
Article in English | MEDLINE | ID: mdl-14657330

ABSTRACT

This article addresses the need for new data on indirect effects of natural and anthropogenic aerosol particles on atmospheric ice clouds. Simultaneous measurements of the concentration and composition of tropospheric aerosol particles capable of initiating ice in cold (cirrus) clouds are reported. Measurements support that cirrus formation occurs both by heterogeneous nucleation by insoluble particles and homogeneous (spontaneous) freezing of particles containing solutions. Heterogeneous ice nuclei concentrations in the cirrus regime depend on temperature, relative humidity, and the concentrations and physical and chemical properties of aerosol particles. The cirrus-active concentrations of heterogeneous nuclei measured in November over the western U.S. were <0.03 cm-3. Considering previous modeling studies, this result suggests a predominant potential impact of these nuclei on cirrus formed by slow, large-scale lifting or small cooling rates, including subvisual cirrus. The most common heterogeneous ice nuclei were identified as relatively pure mineral dusts and metallic particles, some of which may have origin through anthropogenic processes. Homogeneous freezing of large numbers of particles was detected above a critical relative humidity along with a simultaneous transition in nuclei composition toward that of the sulfate-dominated total aerosol population. The temperature and humidity conditions of the homogeneous nucleation transition were reasonably consistent with expectations based on previous theoretical and laboratory studies but were highly variable. The strong presence of certain organic pollutants was particularly noted to be associated with impedance of homogeneous freezing.


Subject(s)
Geology , Atmosphere , Crystallization , Environmental Pollutants , Freezing , Geological Phenomena , Ice , Ions , Seasons , Temperature , Time Factors
4.
Acc Chem Res ; 34(7): 545-53, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11456472

ABSTRACT

Stratospheric ozone depletion was first reported in 1985. Early on, researchers identified polar stratospheric clouds (PSCs) as being important in chemistry related to ozone depletion. PSCs exist as crystalline water-ice particles (type II), and as crystalline (type Ia) or liquid (type Ib) particles stable above the water-ice frost point. Uncertainty remains concerning the composition and formation mechanism of the most common PSC, type Ia. Here, we consider likely formation mechanisms for type Ia PSCs.


Subject(s)
Atmosphere , Crystallization , Ice , Ozone
5.
Annu Rev Phys Chem ; 51: 473-99, 2000.
Article in English | MEDLINE | ID: mdl-11031290

ABSTRACT

Ice particles found within polar stratospheric clouds (PSCs) and upper tropospheric cirrus clouds can dramatically impact the chemistry and climate of the Earth's atmosphere. The formation of PSCs and the subsequent chemical reactions that occur on their surfaces are key components of the massive ozone hole observed each spring over Antarctica. Cirrus clouds also provide surfaces for heterogeneous reactions and significantly modify the Earth's climate by changing the visible and infrared radiation fluxes. Although the role of ice particles in climate and chemistry is well recognized, the exact mechanisms of cloud formation are still unknown, and thus it is difficult to predict how anthropogenic activities will change cloud abundances in the future. This article focuses on the nucleation, chemistry, and microphysical properties of ice particles composing PSCs and cirrus clouds. A general overview of the current state of research is presented along with some unresolved issues facing scientists in the future.

SELECTION OF CITATIONS
SEARCH DETAIL