Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Hepatology ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652584

ABSTRACT

BACKGROUND AIMS: HCV infection continues to be a major global health burden, despite effective antiviral treatments. The urgent need for a protective vaccine is hindered by the scarcity of suitable HCV permissive animal models tractable in vaccination and challenge studies. Currently, only antibody neutralization studies in infectious cell culture systems or studies of protection by passive immunization of human-liver chimeric mice offer the possibility to evaluate the effect of vaccine-induced antibodies. However, differences between culture-permissive and in vivo-permissive viruses make it a challenge to compare analyses between platforms. To address this problem, we aimed at developing genotype-specific virus variants with genetic stability both in vitro and in vivo. APPROACH RESULTS: We demonstrated infection of human-liver chimeric mice with cell culture-adapted HCV JFH1-based Core-NS2 recombinants of genotype 1-6, with a panel of 10 virus strains used extensively in neutralization and receptor studies. Clonal re-engineering of mouse-selected mutations resulted in virus variants with robust replication both in Huh7.5 cells and human-liver chimeric mice, with genetic stability. Furthermore, we showed that overall, these virus variants have similar in vitro neutralization profiles as their parent strains and demonstrated their use for in vivo neutralization studies. CONCLUSIONS: These mouse-selected HCV recombinants enable triage of new vaccine-relevant antibodies in vitro and further allow characterization of protection from infection in vivo using identical viruses in human-liver chimeric mice. As such, these viruses will serve as important resources in testing novel antibodies and can thus guide strategies to develop an efficient protective vaccine against HCV infection.

2.
Gut ; 72(3): 560-572, 2023 03.
Article in English | MEDLINE | ID: mdl-35918103

ABSTRACT

OBJECTIVE: A prophylactic vaccine is needed to control the HCV epidemic, with genotypes 1-3 causing >80% of worldwide infections. Vaccine development is hampered by HCV heterogeneity, viral escape including protection of conserved neutralising epitopes and suboptimal efficacy of HCV cell culture systems. We developed cell culture-based inactivated genotype 1-3 HCV vaccine candidates to present natively folded envelope proteins to elicit neutralising antibodies. DESIGN: High-yield genotype 1a, 2a and 3a HCV were developed by serial passage of TNcc, J6cc and DBN3acc in Huh7.5 cells and engineering of acquired mutations detected by next-generation sequencing. Neutralising epitope exposure was determined in cell-based neutralisation assays using human monoclonal antibodies AR3A and AR4A, and polyclonal antibody C211. BALB/c mice were immunised with processed and inactivated genotype 1a, 2a or 3a viruses using AddaVax, a homologue of the licenced adjuvant MF-59. Purified mouse and patient serum IgG were assayed for neutralisation capacity; mouse IgG and immune-sera were assayed for E1/E2 binding. RESULTS: Compared with the original viruses, high-yield viruses had up to ~1000 fold increased infectivity titres (peak titres: 6-7 log10 focus-forming units (FFU)/mL) and up to ~2470 fold increased exposure of conserved neutralising epitopes. Vaccine-induced IgG broadly neutralised genotype 1-6 HCV (EC50: 30-193 µg/mL; mean 71 µg/mL), compared favourably with IgG from chronically infected patients, and bound genotype 1-3 E1/E2; immune-sera endpoint titres reached up to 32 000. CONCLUSION: High-yield genotype 1-3 HCV could be developed as basis for inactivated vaccine candidates inducing broadly neutralising antibodies in mice supporting further preclinical development.


Subject(s)
Hepatitis C , Viral Hepatitis Vaccines , Humans , Animals , Mice , Antibodies, Neutralizing , Broadly Neutralizing Antibodies/genetics , Broadly Neutralizing Antibodies/metabolism , Epitopes/metabolism , Genotype , Immunoglobulin G , Hepacivirus/genetics , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism
3.
Hepatology ; 77(3): 982-996, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36056620

ABSTRACT

BACKGROUND AND AIMS: HCV evasion of neutralizing antibodies (nAb) results in viral persistence and poses challenges to the development of an urgently needed vaccine. N-linked glycosylation of viral envelope proteins is a key mechanism for such evasion. To facilitate rational vaccine design, we aimed to identify determinants of protection of conserved neutralizing epitopes. APPROACH AND RESULTS: Using a reverse evolutionary approach, we passaged genotype 1a, 1b, 2a, 3a, and 4a HCV with envelope proteins (E1 and E2) derived from chronically infected patients without selective pressure by nAb in cell culture. Compared with the original viruses, HCV recombinants, engineered to harbor substitutions identified in polyclonal cell culture-passaged viruses, showed highly increased fitness and exposure of conserved neutralizing epitopes in antigenic regions 3 and 4, associated with protection from chronic infection. Further reverse genetic studies of acquired E1/E2 substitutions identified positions 418 and 532 in the N1 and N6 glycosylation motifs, localizing to adjacent E2 areas, as key regulators of changes of the E1/E2 conformational state, which governed viral sensitivity to nAb. These effects were independent of predicted glycan occupancy. CONCLUSIONS: We show how N-linked glycosylation motifs can trigger dramatic changes in HCV sensitivity to nAb, independent of glycan occupancy. These findings aid in the understanding of HCV nAb evasion and rational vaccine design, as they can be exploited to stabilize the structurally flexible envelope proteins in an open conformation, exposing important neutralizing epitopes. Finally, this work resulted in a panel of highly fit cell culture infectious HCV recombinants.


Subject(s)
Hepatitis C , Viral Envelope Proteins , Humans , Viral Envelope Proteins/genetics , Antibodies, Neutralizing , Epitopes , Polysaccharides/metabolism , Hepatitis C/prevention & control , Hepacivirus , Hepatitis C Antibodies
4.
Viruses ; 14(11)2022 11 15.
Article in English | MEDLINE | ID: mdl-36423136

ABSTRACT

Hepatitis C virus (HCV) genotype 4 is highly prevalent in the Middle East and parts of Africa. Subtype 4d has recently spread among high-risk groups in Europe. However, 4d infectious culture systems are not available, hampering studies of drugs, as well as neutralizing antibodies relevant for HCV vaccine development. We determined the consensus 4d sequence from a chronic hepatitis C patient by next-generation sequencing, generated a full-length clone thereof (pDH13), and demonstrated that pDH13 RNA-transcripts were viable in the human-liver chimeric mouse model, but not in Huh7.5 cells. However, a JFH1-based DH13 Core-NS5A 4d clone encoding A1671S, T1785V, and D2411G was viable in Huh7.5 cells, with efficient growth after inclusion of 10 additional substitutions [4d(C5A)-13m]. The efficacies of NS3/4A protease- and NS5A- inhibitors against genotypes 4a and 4d were similar, except for ledipasvir, which is less potent against 4d. Compared to 4a, the 4d(C5A)-13m virus was more sensitive to neutralizing monoclonal antibodies AR3A and AR5A, as well as 4a and 4d patient plasma antibodies. In conclusion, we developed the first genotype 4d infectious culture system enabling DAA efficacy testing and antibody neutralization assessment critical to optimization of DAA treatments in the clinic and for vaccine design to combat the HCV epidemic.


Subject(s)
Hepatitis C, Chronic , Hepatitis C , Animals , Mice , Humans , Hepacivirus , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Hepatitis C, Chronic/drug therapy , Genotype
5.
NPJ Vaccines ; 7(1): 148, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36379958

ABSTRACT

Development of B-cell-based hepatitis C virus (HCV) vaccines that induce broadly neutralizing antibodies (bNAbs) is hindered by extensive sequence diversity and low immunogenicity of envelope glycoprotein vaccine candidates, most notably soluble E2 (sE2). To overcome this, we employed two-component approaches using self-assembling virus-like particles (cVLPs; component 1), displaying monomeric or oligomeric forms of HCV sE2 (sE2mono or sE2oligo; component 2). Immunization studies were performed in BALB/c mice and the neutralizing capacity of vaccine-induced antibodies was tested in cultured-virus-neutralizations, using HCV of genotypes 1-6. sE2-cVLP vaccines induced significantly higher levels of NAbs (p = 0.0065) compared to corresponding sE2 vaccines. Additionally, sE2oligo-cVLP was superior to sE2mono-cVLP in inducing bNAbs. Interestingly, human monoclonal antibody AR2A had reduced binding in ELISA to sE2oligo-cVLP compared with sE2mono-cVLP and competition ELISA using mouse sera from vaccinated animals indicated that sE2oligo-cVLP induced significantly less non-bNAbs AR2A (p = 0.0043) and AR1B (p = 0.017). Thus, cVLP-displayed oligomeric sE2 shows promise as an HCV vaccine candidate.

6.
J Hepatol ; 76(5): 1051-1061, 2022 05.
Article in English | MEDLINE | ID: mdl-34990750

ABSTRACT

BACKGROUND & AIMS: A prophylactic vaccine is required to eliminate HCV as a global public health threat. We developed whole virus inactivated HCV vaccine candidates employing a licensed adjuvant. Further, we investigated the effects of HCV envelope protein modifications (to increase neutralization epitope exposure) on immunogenicity. METHODS: Whole virus vaccine antigen was produced in Huh7.5 hepatoma cells, processed using a multistep protocol and formulated with adjuvant (MF-59 analogue AddaVax or aluminium hydroxide). We investigated the capacity of IgG purified from the serum of immunized BALB/c mice to neutralize genotype 1-6 HCV (by virus neutralization assays) and to bind homologous envelope proteins (by ELISA). Viruses used for immunizations were (i) HCV5aHi with strain SA13 envelope proteins and modification of an O-linked glycosylation site in E2 (T385P), (ii) HCV5aHi(T385) with reversion of T385P to T385, featuring the original E2 sequence determined in vivo and (iii) HCV5aHi(ΔHVR1) with deletion of HVR1. For these viruses, epitope exposure was investigated using human monoclonal (AR3A and AR4A) and polyclonal (C211 and H06) antibodies in neutralization assays. RESULTS: Processed HCV5aHi formulated with AddaVax induced antibodies that efficiently bound homologous envelope proteins and broadly neutralized cultured genotype 1-6 HCV, with half maximal inhibitory concentrations of between 14 and 192 µg/ml (mean of 36 µg/ml against the homologous virus). Vaccination with aluminium hydroxide was less immunogenic. Compared to HCV5aHi(T385) with the original E2 sequence, HCV5aHi with a modified glycosylation site and HCV5aHi(ΔHVR1) without HVR1 showed increased neutralization epitope exposure but similar immunogenicity. CONCLUSION: Using an adjuvant suitable for human use, we developed inactivated whole HCV vaccine candidates that induced broadly neutralizing antibodies, which warrant investigation in further pre-clinical studies. LAY SUMMARY: A vaccine against hepatitis C virus (HCV) is needed to prevent the estimated 2 million new infections and 400,000 deaths caused by this virus each year. We developed inactivated whole HCV vaccine candidates using adjuvants licensed for human use, which, following immunization of mice, induced antibodies that efficiently neutralized all HCV genotypes with recognized epidemiological importance. HCV variants with modified envelope proteins exhibited similar immunogenicity as the virus with the original envelope proteins.


Subject(s)
Hepatitis C , Viral Hepatitis Vaccines , Aluminum Hydroxide/metabolism , Animals , Antibodies, Neutralizing , Antigens, Viral , Epitopes , Genotype , Hepacivirus , Hepatitis C Antibodies , Mice , Mice, Inbred BALB C , Viral Envelope Proteins
7.
Curr Opin Virol ; 50: 69-75, 2021 10.
Article in English | MEDLINE | ID: mdl-34403905

ABSTRACT

Conformational dynamics of viral envelope proteins seem to be involved in mediating evasion from neutralizing antibodies (NAbs) by mechanisms that limit exposure of conserved protein motifs. For hepatitis C virus (HCV), molecular studies have only recently begun to unveil how such dynamics of the envelope protein heterodimer, E1/E2, are linked to viral entry and NAb evasion. Here, we review data suggesting that E1/E2 exists in an equilibrium between theoretical 'open' (NAb-sensitive) and 'closed' (NAb-resistant) conformational states. We describe how this equilibrium is influenced by viral sequence polymorphisms and that it is critically dependent on the N-terminal region of E2, termed hypervariable region 1 (HVR1). Finally, we discuss how it appears that the virus binding site for the HCV entry co-receptor CD81 is less available in 'closed' E1/E2 states and that NAb-resistant viruses require a more intricate entry pathway involving also the entry co-receptor, SR-BI.


Subject(s)
Hepacivirus , Hepatitis C , Antibodies, Neutralizing , Hepacivirus/genetics , Humans , Viral Envelope Proteins/genetics , Virus Internalization
8.
PLoS One ; 16(7): e0255336, 2021.
Article in English | MEDLINE | ID: mdl-34329365

ABSTRACT

Yearly, about 1.5 million people become chronically infected with hepatitis C virus (HCV) and for the 71 million with chronic HCV infection about 400,000 die from related morbidities, including liver cirrhosis and cancer. Effective treatments exist, but challenges including cost-of-treatment and wide-spread undiagnosed infection, necessitates the development of vaccines. Vaccines should induce neutralizing antibodies (NAbs) against the HCV envelope (E) transmembrane glycoprotein 2, E2, which partly depends on its interaction partner, E1, for folding. Here, we generated three soluble HCV envelope protein antigens with the transmembrane regions deleted (i.e., fused peptide backbones), termed sE1E2 (E1 followed by E2), sE2E1 (E2 followed by E1), and sE21E (E2 followed by inverted E1). The E1 inversion for sE21E positions C-terminal residues of E1 near C-terminal residues of E2, which is in analogy to how they likely interact in native E1/E2 complexes. Probing conformational E2 epitope binding using HCV patient-derived human monoclonal antibodies, we show that sE21E was superior to sE2E1, which was consistently superior to sE1E2. This correlated with improved induction of NAbs by sE21E compared with sE2E1 and especially compared with sE1E2 in female BALB/c mouse immunizations. The deletion of the 27 N-terminal amino acids of E2, termed hypervariable region 1 (HVR1), conferred slight increases in antigenicity for sE2E1 and sE21E, but severely impaired induction of antibodies able to neutralize in vitro viruses retaining HVR1. Finally, comparing sE21E with sE2 in mouse immunizations, we show similar induction of heterologous NAbs. In summary, we find that C-terminal E2 fusion of E1 or 1E is superior to N-terminal fusion, both in terms of antigenicity and the induction of heterologous NAbs. This has relevance when designing HCV E1E2 vaccine antigens.


Subject(s)
Antigens, Viral , Hepacivirus , Hepatitis C Antibodies/immunology , Viral Envelope Proteins , Viral Hepatitis Vaccines , Animals , Antigens, Viral/genetics , Antigens, Viral/immunology , Antigens, Viral/pharmacology , Drug Evaluation , Female , HEK293 Cells , Hepacivirus/genetics , Hepacivirus/immunology , Humans , Mice , Mice, Inbred BALB C , Solubility , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Viral Envelope Proteins/pharmacology , Viral Hepatitis Vaccines/genetics , Viral Hepatitis Vaccines/immunology , Viral Hepatitis Vaccines/pharmacology
9.
PLoS Pathog ; 17(7): e1009720, 2021 07.
Article in English | MEDLINE | ID: mdl-34280245

ABSTRACT

Hepatitis C virus (HCV) chronically infects 70 million people worldwide with an estimated annual disease-related mortality of 400,000. A vaccine could prevent spread of this pervasive human pathogen, but has proven difficult to develop, partly due to neutralizing antibody evasion mechanisms that are inherent features of the virus envelope glycoproteins, E1 and E2. A central actor is the E2 motif, hypervariable region 1 (HVR1), which protects several non-overlapping neutralization epitopes through an incompletely understood mechanism. Here, we show that introducing different HVR1-isolate sequences into cell-culture infectious JFH1-based H77 (genotype 1a) and J4 (genotype 1b) Core-NS2 recombinants can lead to severe viral attenuation. Culture adaptation of attenuated HVR1-swapped recombinants permitted us to identify E1/E2 substitutions at conserved positions both within and outside HVR1 that increased the infectivity of attenuated HVR1-swapped recombinants but were not adaptive for original recombinants. H77 recombinants with HVR1 from multiple other isolates consistently acquired substitutions at position 348 in E1 and position 385 in HVR1 of E2. Interestingly, HVR1-swapped J4 recombinants primarily acquired other substitutions: F291I (E1), F438V (E2), F447L/V/I (E2) and V710L (E2), indicating a different adaptation pathway. For H77 recombinants, the adaptive E1/E2 substitutions increased sensitivity to the neutralizing monoclonal antibodies AR3A and AR4A, whereas for J4 recombinants, they increased sensitivity to AR3A, while having no effect on sensitivity to AR4A. To evaluate effects of the substitutions on AR3A and AR4A binding, we performed ELISAs on extracted E1/E2 protein and performed immunoprecipitation of relevant viruses. However, extracted E1/E2 protein and immunoprecipitation of HCV particles only reproduced the neutralization phenotypes of the J4 recombinants. Finally, we found that the HVR1-swap E1/E2 substitutions decrease virus entry dependency on co-receptor SR-BI. Our study identifies E1/E2 positions that could be critical for intra-complex HVR1 interactions while emphasizing the need for developing novel tools for molecular studies of E1/E2 interactions.


Subject(s)
Adaptation, Physiological/physiology , Hepacivirus/physiology , Immune Evasion/physiology , Viral Envelope Proteins/physiology , Cell Line , Chimera , HEK293 Cells , Hepacivirus/pathogenicity , Humans , Virus Internalization
10.
Vaccines (Basel) ; 9(3)2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33804732

ABSTRACT

Hepatitis C virus (HCV) is a major causative agent of acute and chronic hepatitis. It is estimated that 400,000 people die every year from chronic HCV infection, mostly from severe liver-related diseases such as cirrhosis and liver cancer. Although HCV was discovered more than 30 years ago, an efficient prophylactic vaccine is still missing. The HCV glycoprotein complex, E1/E2, is the principal target of neutralizing antibodies (NAbs) and, thus, is an attractive antigen for B-cell vaccine design. However, the high genetic variability of the virus necessitates the identification of conserved epitopes. Moreover, the high intrinsic mutational capacity of HCV allows the virus to continually escape broadly NAbs (bNAbs), which is likely to cause issues with vaccine-resistant variants. Several studies have assessed the barrier-to-resistance of vaccine-relevant bNAbs in vivo and in vitro. Interestingly, recent studies have suggested that escape substitutions can confer antibody resistance not only by direct modification of the epitope but indirectly through allosteric effects, which can be grouped based on the breadth of these effects on antibody susceptibility. In this review, we summarize the current understanding of HCV-specific NAbs, with a special focus on vaccine-relevant bNAbs and their targets. We highlight antibody escape studies pointing out the different methodologies and the escape mutations identified thus far. Finally, we analyze the antibody escape mechanisms of envelope protein escape substitutions and polymorphisms according to the most recent evidence in the HCV field. The accumulated knowledge in identifying bNAb epitopes as well as assessing barriers to resistance and elucidating relevant escape mechanisms may prove critical in the successful development of an HCV B-cell vaccine.

11.
Immunity ; 54(4): 781-796.e4, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33675683

ABSTRACT

Human IGHV1-69-encoded broadly neutralizing antibodies (bnAbs) that target the hepatitis C virus (HCV) envelope glycoprotein (Env) E2 are important for protection against HCV infection. An IGHV1-69 ortholog gene, VH1.36, is preferentially used for bnAbs isolated from HCV Env-immunized rhesus macaques (RMs). Here, we studied the genetic, structural, and functional properties of VH1.36-encoded bnAbs generated by vaccination, in comparison to IGHV1-69-encoded bnAbs from HCV patients. Global B cell repertoire analysis confirmed the expansion of VH1.36-derived B cells in immunized animals. Most E2-specific, VH1.36-encoded antibodies cross-neutralized HCV. Crystal structures of two RM bnAbs with E2 revealed that the RM bnAbs engaged conserved E2 epitopes using similar molecular features as human bnAbs but with a different binding mode. Longitudinal analyses of the RM antibody repertoire responses during immunization indicated rapid lineage development of VH1.36-encoded bnAbs with limited somatic hypermutation. Our findings suggest functional convergence of a germline-encoded bnAb response to HCV Env with implications for vaccination in humans.


Subject(s)
Antibodies, Neutralizing/immunology , Germ Cells/immunology , Glycoproteins/immunology , Hepacivirus/immunology , Hepatitis C/immunology , Macaca mulatta/immunology , Viral Envelope Proteins/immunology , Animals , B-Lymphocytes/immunology , CHO Cells , Cell Line , Cricetulus , Epitopes/immunology , HEK293 Cells , Hepatitis C/virology , Humans , Longitudinal Studies , Macaca mulatta/virology , Receptors, Antigen, B-Cell/immunology , Vaccination/methods
12.
Sci Adv ; 6(35): eabb5938, 2020 08.
Article in English | MEDLINE | ID: mdl-32923643

ABSTRACT

Broad antibody sensitivity differences of hepatitis C virus (HCV) isolates and their ability to persist in the presence of neutralizing antibodies (NAbs) remain poorly understood. Here, we show that polymorphisms within glycoprotein E2, including hypervariable region 1 (HVR1) and antigenic site 412 (AS412), broadly affect NAb sensitivity by shifting global envelope protein conformation dynamics between theoretical "closed," neutralization-resistant and "open," neutralization-sensitive states. The conformational space of AS412 was skewed toward ß-hairpin-like conformations in closed states, which also depended on HVR1, assigning function to these enigmatic E2 regions. Scavenger receptor class B, type I entry dependency of HCV was associated with NAb resistance and correlated perfectly with decreased virus propensity to interact with HCV co-receptor CD81, indicating that decreased NAb sensitivity resulted in a more complex entry pathway. This link between global E1/E2 states and functionally distinct AS412 conformations has important implications for targeting AS412 in rational HCV vaccine designs.


Subject(s)
Hepacivirus , Hepatitis C , Antibodies, Neutralizing , Hepacivirus/genetics , Hepatitis C Antibodies , Humans , Viral Envelope Proteins/metabolism
13.
Sci Adv ; 6(30): eabb5642, 2020 07.
Article in English | MEDLINE | ID: mdl-32754640

ABSTRACT

To achieve global elimination of hepatitis C virus (HCV), an effective cross-genotype vaccine is needed. The HCV envelope glycoprotein E2 is the main target for neutralizing antibodies (nAbs), which aid in HCV clearance and protection. E2 is structurally flexible and functions in engaging host receptors. Many nAbs bind to the "neutralizing face" on E2, including several broadly nAbs encoded by the VH1-69 germline gene family that bind to a similar conformation (A) of this face. Here, a previously unknown conformation (B) of the neutralizing face is revealed in crystal structures of two of four additional E2-VH1-69 nAb complexes. In this conformation, the E2 front-layer region is displaced upon antibody binding, exposing residues in the back layer for direct antibody interaction. This E2 B structure may represent another conformational state in the viral entry process that is susceptible to antibody neutralization and thus provide a new target for rational vaccine development.


Subject(s)
Hepatitis C , Viral Hepatitis Vaccines , Antibodies, Neutralizing , Epitopes , Hepacivirus , Hepatitis C Antibodies , Humans
14.
Vaccines (Basel) ; 8(2)2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32532076

ABSTRACT

Hepatitis C virus (HCV) infection with associated chronic liver diseases is a major health problem worldwide. Here, we designed hepatitis B virus (HBV) small surface antigen (sHBsAg) virus-like particles (VLPs) presenting different epitopes derived from the HCV E2 glycoprotein (residues 412-425, 434-446, 502-520, and 523-535 of isolate H77C). Epitopes were selected based on their amino acid sequence conservation and were previously reported as targets of HCV neutralizing antibodies. Chimeric VLPs obtained in the Leishmania tarentolae expression system, in combination with the adjuvant Addavax, were used to immunize mice. Although all VLPs induced strong humoral responses, only antibodies directed against HCV 412-425 and 523-535 epitopes were able to react with the native E1E2 glycoprotein complexes of different HCV genotypes in ELISA. Neutralization assays against genotype 1-6 cell culture infectious HCV (HCVcc), revealed that only VLPs carrying the 412-425 epitope induced efficient HCV cross-neutralizing antibodies, but with isolate specific variations in efficacy that could not necessarily be explained by differences in epitope sequences. In contrast, antibodies targeting 434-446, 502-520, and 523-535 epitopes were not neutralizing HCVcc, highlighting the importance of conformational antibodies for efficient virus neutralization. Thus, 412-425 remains the most promising linear E2 epitope for further bivalent, rationally designed vaccine research.

15.
Proc Natl Acad Sci U S A ; 116(20): 10039-10047, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31040211

ABSTRACT

About two million new cases of hepatitis C virus (HCV) infections annually underscore the urgent need for a vaccine. However, this effort has proven challenging because HCV evades neutralizing antibodies (NAbs) through molecular features of viral envelope glycoprotein E2, including hypervariable region 1 (HVR1) and N-linked glycans. Here, we observe large variation in the effects of removing individual E2 glycans across HCV strains H77(genotype 1a), J6(2a), and S52(3a) in Huh7.5 cell infections. Also, glycan-mediated effects on neutralization sensitivity were completely HVR1-dependent, and neutralization data were consistent with indirect protection of epitopes, as opposed to direct steric shielding. Indeed, the effect of removing each glycan was similar both in type (protective or sensitizing) and relative strength across four nonoverlapping neutralization epitopes. Temperature-dependent neutralization (e.g., virus breathing) assays indicated that both HVR1 and protective glycans stabilized a closed, difficult to neutralize, envelope conformation. This stabilizing effect was hierarchical as removal of HVR1 fully destabilized closed conformations, irrespective of glycan status, consistent with increased instability at acidic pH and high temperatures. Finally, we observed a strong correlation between neutralization sensitivity and scavenger receptor BI dependency during viral entry. In conclusion, our study indicates that HVR1 and glycans regulate HCV neutralization by shifting the equilibrium between open and closed envelope conformations. This regulation appears tightly linked with scavenger receptor BI dependency, suggesting a role of this receptor in transitions from closed to open conformations during entry. This importance of structural dynamics of HCV envelope glycoproteins has critical implications for vaccine development and suggests that similar phenomena could contribute to immune evasion of other viruses.


Subject(s)
Hepacivirus/immunology , Viral Proteins/immunology , Antibodies, Neutralizing , Glycosylation
16.
PLoS Pathog ; 15(5): e1007772, 2019 05.
Article in English | MEDLINE | ID: mdl-31100098

ABSTRACT

Cumulative evidence supports a role for neutralizing antibodies contributing to spontaneous viral clearance during acute hepatitis C virus (HCV) infection. Information on the timing and specificity of the B cell response associated with clearance is crucial to inform vaccine design. From an individual who cleared three sequential HCV infections with genotypes 1b, 1a and 3a strains, respectively, we employed peripheral B cells to isolate and characterize neutralizing human monoclonal antibodies (HMAbs) to HCV after the genotype 1 infections. The majority of isolated antibodies, designated as HMAbs 212, target conformational epitopes on the envelope glycoprotein E2 and bound broadly to genotype 1-6 E1E2 proteins. Further, some of these antibodies showed neutralization potential against cultured genotype 1-6 viruses. Competition studies with defined broadly neutralizing HCV HMAbs to epitopes in distinct clusters, designated antigenic domains B, C, D and E, revealed that the selected HMAbs compete with B, C and D HMAbs, previously isolated from subjects with chronic HCV infections. Epitope mapping studies revealed domain B and C specificity of these HMAbs 212. Sequential serum samples from the studied subject inhibited the binding of HMAbs 212 to autologous E2 and blocked a representative domain D HMAb. The specificity of this antibody response appears similar to that observed during chronic infection, suggesting that the timing and affinity maturation of the antibody response are the critical determinants in successful and repeated viral clearance. While additional studies should be performed for individuals with clearance or persistence of HCV, our results define epitope determinants for antibody E2 targeting with important implications for the development of a B cell vaccine.


Subject(s)
Antibodies, Neutralizing/immunology , Drug Design , Hepacivirus/immunology , Hepatitis C Antibodies/immunology , Hepatitis C/prevention & control , Viral Envelope Proteins/immunology , Viral Hepatitis Vaccines/immunology , Adult , Amino Acid Sequence , Antibodies, Monoclonal/immunology , Epitope Mapping , Genotype , Hepatitis C/immunology , Hepatitis C/virology , Humans , Male , Neutralization Tests , Prospective Studies , Sequence Homology , Young Adult
17.
Sci Adv ; 5(1): eaav1882, 2019 01.
Article in English | MEDLINE | ID: mdl-30613781

ABSTRACT

An effective vaccine to the antigenically diverse hepatitis C virus (HCV) must target conserved immune epitopes. Here, we investigate cross-neutralization of HCV genotypes by broadly neutralizing antibodies (bNAbs) encoded by the relatively abundant human gene family V H 1-69. We have deciphered the molecular requirements for cross-neutralization by this unique class of human antibodies from crystal structures of HCV E2 in complex with bNAbs. An unusually high binding affinity is found for germ line-reverted versions of VH1-69 precursor antibodies, and neutralization breadth is acquired during affinity maturation. Deep sequencing analysis of an HCV-immune B cell repertoire further demonstrates the importance of the V H 1-69 gene family in the generation of HCV bNAbs. This study therefore provides critical insights into immune recognition of HCV with important implications for rational vaccine design.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/immunology , Hepacivirus/immunology , Hepatitis C Antibodies/immunology , Hepatitis C/immunology , Antibody Affinity/immunology , Binding Sites , Blood Donors , Cell Line, Tumor , Cross Reactions/immunology , Epitopes/chemistry , Hepatitis C/virology , Humans , Viral Envelope Proteins/immunology , Viral Envelope Proteins/metabolism , Viral Hepatitis Vaccines/genetics , Viral Hepatitis Vaccines/immunology
18.
J Infect Dis ; 219(1): 68-79, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30102355

ABSTRACT

Global control of hepatitis C virus (HCV) depends on development of a prophylactic vaccine. We studied escape for cross-genotype-reactive neutralizing antibody AR4A, providing valuable information for HCV vaccine design. We cultured HCV core-NS2 recombinants H77 (genotype 1a)/JFH1 or the highly antibody-susceptible hypervariable region 1 (HVR1)-deleted variants H77/JFH1∆HVR1 and J6(genotype 2a)/JFH1∆HVR1 in Huh7.5 cells with AR4A. Long-term AR4A exposure of H77/JFH1 and H77/JFH1∆HVR1 did not yield resistance. However, J6/JFH1∆HVR1 developed the envelope-E2 substitutions I696T or I696N, which reduced AR4A binding (I696N > I696T). I696N conferred greater AR4A resistance than I696T in J6/JFH1∆HVR1, whereas the reverse was observed in J6/JFH1. This was because I696N but not I696T conferred broadly increased antibody neutralization susceptibility to J6/JFH1. I696N and I696T abrogated infectivity of H77/JFH1 and broadly increased neutralization susceptibility of S52 (genotype 3a)/JFH1. In conclusion, I696 is in the AR4A epitope, which has a high barrier to resistance, thus strengthening the rationale for its inclusion in rational HCV vaccine designs.


Subject(s)
Antibodies, Monoclonal/blood , Antibodies, Neutralizing/blood , Hepacivirus/immunology , Antibodies, Neutralizing/immunology , Antigens, Viral/immunology , Broadly Neutralizing Antibodies , Cell Line, Tumor , Epitopes/immunology , Genotype , Humans , Viral Envelope Proteins/immunology , Viral Hepatitis Vaccines/immunology
19.
J Virol ; 93(4)2019 02 15.
Article in English | MEDLINE | ID: mdl-30487284

ABSTRACT

Yearly, ∼2 million people become hepatitis C virus (HCV) infected, resulting in an elevated lifetime risk for severe liver-related chronic illnesses. Characterizing epitopes of broadly neutralizing antibodies (NAbs), such as AR3A, is critical to guide vaccine development. Previously identified alanine substitutions that can reduce AR3A binding to expressed H77 envelope were introduced into chimeric cell culture-infectious HCV recombinants (HCVcc) H77(core-NS2)/JFH1. Substitutions G523A, G530A, and D535A greatly reduced fitness, and S424A, P525A, and N540A, although viable, conferred only low-level AR3A resistance. Using highly NAb-sensitive hypervariable region 1 (HVR1)-deleted HCVcc, H77/JFH1ΔHVR1 and J6(core-NS2)/JFH1ΔHVR1, we previously reported a low barrier to developing AR5A NAb resistance substitutions. Here, we cultured Huh7.5 cells infected with H77/JFH1, H77/JFH1ΔHVR1, or J6/JFH1ΔHVR1 with AR3A. We identified the resistance envelope substitutions M345T in H77/JFH1, L438S and F442Y in H77/JFH1ΔHVR1, and D431G in J6/JFH1ΔHVR1 M345T increased infectivity and conferred low-level AR3A resistance to H77/JFH1 but not H77/JFH1ΔHVR1 L438S and F442Y conferred high-level AR3A resistance to H77/JFH1ΔHVR1 but abrogated the infectivity of H77/JFH1. D431G conferred AR3A resistance to J6/JFH1ΔHVR1 but not J6/JFH1. This was possibly because D431G conferred broadly increased neutralization sensitivity to J6/JFH1D431G but not J6/JFH1ΔHVR1/D431G while decreasing scavenger receptor class B type I coreceptor dependency. Common substitutions at positions 431 and 442 did not confer high-level resistance in other genotype 2a recombinants [JFH1 or T9(core-NS2)/JFH1]. Although the data indicate that AR3A has a high barrier to resistance, our approach permitted identification of low-level resistance substitutions. Also, the HVR1-dependent effects on AR3A resistance substitutions suggest a complex role of HVR1 in virus escape and receptor usage, with important implications for HCV vaccine development.IMPORTANCE Hepatitis C virus (HCV) is a leading cause of liver-related mortality, and limited treatment accessibility makes vaccine development a high priority. The vaccine-relevant cross-genotype-reactive antibody AR3A has shown high potency, but the ability of the virus to rapidly escape by mutating the AR3A epitope (barrier to resistance) remains unexplored. Here, we succeeded in inducing only low-level AR3A resistance, indicating a higher barrier to resistance than what we have previously reported for AR5A. Furthermore, we identify AR3A resistance substitutions that have hypervariable region 1 (HVR1)-dependent effects on HCV viability and on broad neutralization sensitivity. One of these substitutions increased envelope breathing and decreased scavenger receptor class B type I HCV coreceptor dependency, both in an HVR1-dependent fashion. Thus, we identify novel AR3A-specific resistance substitutions and the role of HVR1 in protecting HCV from AR3-targeting antibodies. These viral escape mechanisms should be taken into consideration in future HCV vaccine development.


Subject(s)
Antibodies, Viral/immunology , Hepacivirus/immunology , Hepacivirus/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Cell Line, Tumor , Epitopes , Genotype , Hepacivirus/pathogenicity , Hepatitis C/virology , Humans , Neutralization Tests , Viral Envelope Proteins/genetics , Viral Proteins/genetics
20.
Methods Mol Biol ; 1911: 433-439, 2019.
Article in English | MEDLINE | ID: mdl-30593643

ABSTRACT

The method outlined here enables evaluation of the neutralization potency of monoclonal and polyclonal antibodies against in vitro cultured hepatitis C virus (HCV). The high variation in envelope protein sequence among HCV isolates necessitates the inclusion of several isolates, spanning the major genotypes of HCV, in order to make strong conclusions concerning the cross-reactive neutralization potential of a given antibody. This would be particularly relevant for any neutralization experiments aimed at uncovering novel therapeutic- or vaccine-relevant antibodies. In addition, these assays can also be used to compare neutralization sensitivity of novel cultured HCV to that of previously characterized isolates.


Subject(s)
Antibodies, Neutralizing/analysis , Hepacivirus/immunology , Hepatitis C Antibodies/analysis , Hepatitis C/prevention & control , Neutralization Tests/methods , Antibodies, Neutralizing/immunology , Cell Line, Tumor , Cross Reactions/immunology , Drug Development , Hepatitis C/immunology , Hepatitis C Antibodies/immunology , Humans , Neutralization Tests/instrumentation , Viral Hepatitis Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...