Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0300915, 2024.
Article in English | MEDLINE | ID: mdl-38687731

ABSTRACT

Mosquitoes harbor a large diversity of eukaryotic viruses. Those viromes probably influence mosquito physiology and the transmission of human pathogens. Nevertheless, their ecology remains largely unstudied. Here, we address two key questions in virome ecology. First, we assessed the influence of mosquito species on virome taxonomic diversity and relative abundance. Contrary to most previous studies, the potential effect of the habitat was explicitly included. Thousands of individuals of Culex poicilipes and Culex tritaeniorhynchus, two vectors of viral diseases, were concomitantly sampled in three habitats over two years. A total of 95 viral taxa from 25 families were identified with meta-transcriptomics, with 75% of taxa shared by both mosquitoes. Viromes significantly differed by mosquito species but not by habitat. Differences were largely due to changes in relative abundance of shared taxa. Then, we studied the diversity of viruses with a broad host range. We searched for viral taxa shared by the two Culex species and Aedes vexans, another disease vector, present in one of the habitats. Twenty-six out of the 163 viral taxa were found in the three mosquitoes. These taxa encompassed 14 families. A database analysis supported broad host ranges for many of those viruses, as well as a widespread geographical distribution. Thus, the viromes of mosquitoes from the same genera mainly differed in the relative abundance of shared taxa, whereas differences in viral diversity dominated between mosquito genera. Whether this new model of virome diversity and structure applies to other mosquito communities remains to be determined.


Subject(s)
Culex , Host Specificity , Mosquito Vectors , Virome , Animals , Virome/genetics , Culex/virology , Mosquito Vectors/virology , Aedes/virology , Culicidae/virology , Ecosystem , Sympatry , Viruses/classification , Viruses/genetics , Viruses/isolation & purification
2.
Nat Commun ; 13(1): 2314, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35538057

ABSTRACT

The 1918 influenza pandemic was the deadliest respiratory pandemic of the 20th century and determined the genomic make-up of subsequent human influenza A viruses (IAV). Here, we analyze both the first 1918 IAV genomes from Europe and the first from samples prior to the autumn peak. 1918 IAV genomic diversity is consistent with a combination of local transmission and long-distance dispersal events. Comparison of genomes before and during the pandemic peak shows variation at two sites in the nucleoprotein gene associated with resistance to host antiviral response, pointing at a possible adaptation of 1918 IAV to humans. Finally, local molecular clock modeling suggests a pure pandemic descent of seasonal H1N1 IAV as an alternative to the hypothesis of origination through an intrasubtype reassortment.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Genome, Viral/genetics , Genomics , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A virus/genetics , Influenza, Human/epidemiology , Influenza, Human/genetics
3.
Science ; 368(6497): 1367-1370, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32554594

ABSTRACT

Many infectious diseases are thought to have emerged in humans after the Neolithic revolution. Although it is broadly accepted that this also applies to measles, the exact date of emergence for this disease is controversial. We sequenced the genome of a 1912 measles virus and used selection-aware molecular clock modeling to determine the divergence date of measles virus and rinderpest virus. This divergence date represents the earliest possible date for the establishment of measles in human populations. Our analyses show that the measles virus potentially arose as early as the sixth century BCE, possibly coinciding with the rise of large cities.


Subject(s)
Communicable Diseases, Emerging/history , Evolution, Molecular , Genetic Variation , Measles virus/genetics , Measles/history , Cities/history , Communicable Diseases, Emerging/virology , History, Ancient , Humans , Measles/virology , Rinderpest virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...