Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters











Publication year range
1.
Mol Genet Metab ; 143(1-2): 108560, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39121792

ABSTRACT

Isolated methylmalonic acidemia/aciduria (MMA) due to MMUT enzyme deficiency is an ultra-rare pediatric disease with high morbidity and mortality, with no approved disease-altering therapies. Previous publications showed that systemic treatment with a codon-optimized mRNA encoding wild-type human MMUT (MMUT) is a promising strategy for treatment of MMA. We developed a second-generation drug product, mRNA-3705, comprised of an mRNA encoding the MMUT enzyme formulated in a lipid nanoparticle (LNP) with incorporation of enhancements over the previous clinical candidate mRNA-3704. Both drug products produced functional MMUT in rat livers when dosed IV, and showed long-term safety and efficacy in two mouse models of MMA. mRNA-3705 produced 2.1-3.4-fold higher levels of hepatic MMUT protein expression than the first-generation drug product mRNA-3704 when given at an identical dose level, which resulted in greater and more sustained reductions in plasma methylmalonic acid. The data presented herein provide comprehensive preclinical pharmacology to support the clinical development of mRNA-3705.

2.
Nat Med ; 27(12): 2234-2245, 2021 12.
Article in English | MEDLINE | ID: mdl-34887575

ABSTRACT

The development of a protective vaccine remains a top priority for the control of the HIV/AIDS pandemic. Here, we show that a messenger RNA (mRNA) vaccine co-expressing membrane-anchored HIV-1 envelope (Env) and simian immunodeficiency virus (SIV) Gag proteins to generate virus-like particles (VLPs) induces antibodies capable of broad neutralization and reduces the risk of infection in rhesus macaques. In mice, immunization with co-formulated env and gag mRNAs was superior to env mRNA alone in inducing neutralizing antibodies. Macaques were primed with a transmitted-founder clade-B env mRNA lacking the N276 glycan, followed by multiple booster immunizations with glycan-repaired autologous and subsequently bivalent heterologous envs (clades A and C). This regimen was highly immunogenic and elicited neutralizing antibodies against the most prevalent (tier-2) HIV-1 strains accompanied by robust anti-Env CD4+ T cell responses. Vaccinated animals had a 79% per-exposure risk reduction upon repeated low-dose mucosal challenges with heterologous tier-2 simian-human immunodeficiency virus (SHIV AD8). Thus, the multiclade env-gag VLP mRNA platform represents a promising approach for the development of an HIV-1 vaccine.


Subject(s)
Antibodies, Neutralizing/immunology , Genes, env , Genes, gag , HIV Antibodies/biosynthesis , HIV-1/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Vaccines, Synthetic/immunology , mRNA Vaccines/immunology , Animals , HIV Antibodies/immunology , Immunization, Secondary , Macaca mulatta , Risk Factors , Simian Acquired Immunodeficiency Syndrome/immunology , Vaccines, Synthetic/administration & dosage , mRNA Vaccines/administration & dosage
3.
Front Immunol ; 12: 772864, 2021.
Article in English | MEDLINE | ID: mdl-34956199

ABSTRACT

Nipah virus (NiV) represents a significant pandemic threat with zoonotic transmission from bats-to-humans with almost annual regional outbreaks characterized by documented human-to-human transmission and high fatality rates. Currently, no vaccine against NiV has been approved. Structure-based design and protein engineering principles were applied to stabilize the fusion (F) protein in its prefusion trimeric conformation (pre-F) to improve expression and increase immunogenicity. We covalently linked the stabilized pre-F through trimerization domains at the C-terminus to three attachment protein (G) monomers, forming a chimeric design. These studies detailed here focus on mRNA delivery of NiV immunogens in mice, assessment of mRNA immunogen-specific design elements and their effects on humoral and cellular immunogenicity. The pre-F/G chimera elicited a strong neutralizing antibody response and a superior NiV-specific Tfh and other effector T cell response compared to G alone across both the mRNA and protein platforms. These findings enabled final candidate selection of pre-F/G Fd for clinical development.


Subject(s)
Antigens, Viral/genetics , Liposomes/administration & dosage , Nanoparticles/administration & dosage , Nipah Virus/immunology , Viral Envelope Proteins/genetics , Viral Fusion Proteins/genetics , Viral Vaccines/administration & dosage , mRNA Vaccines/administration & dosage , Animals , Antigens, Viral/immunology , Female , Immunoglobulin G/blood , Mice , Public-Private Sector Partnerships , RNA, Messenger/administration & dosage , T-Lymphocytes/immunology , Viral Envelope Proteins/immunology , Viral Fusion Proteins/immunology
4.
Nat Commun ; 12(1): 3090, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34035281

ABSTRACT

Glycogen Storage Disease 1a (GSD1a) is a rare, inherited metabolic disorder caused by deficiency of glucose 6-phosphatase (G6Pase-α). G6Pase-α is critical for maintaining interprandial euglycemia. GSD1a patients exhibit life-threatening hypoglycemia and long-term liver complications including hepatocellular adenomas (HCAs) and carcinomas (HCCs). There is no treatment for GSD1a and the current standard-of-care for managing hypoglycemia (Glycosade®/modified cornstarch) fails to prevent HCA/HCC risk. Therapeutic modalities such as enzyme replacement therapy and gene therapy are not ideal options for patients due to challenges in drug-delivery, efficacy, and safety. To develop a new treatment for GSD1a capable of addressing both the life-threatening hypoglycemia and HCA/HCC risk, we encapsulated engineered mRNAs encoding human G6Pase-α in lipid nanoparticles. We demonstrate the efficacy and safety of our approach in a preclinical murine model that phenotypically resembles the human condition, thus presenting a potential therapy that could have a significant therapeutic impact on the treatment of GSD1a.


Subject(s)
Disease Models, Animal , Genetic Therapy/methods , Glucose-6-Phosphatase/genetics , Glycogen Storage Disease/therapy , RNA, Messenger/genetics , Animals , Cell Line, Tumor , Cytokines/blood , Cytokines/metabolism , Glucose-6-Phosphatase/metabolism , Glycogen/metabolism , Glycogen Storage Disease/genetics , Glycogen Storage Disease/pathology , HeLa Cells , Humans , Liver/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Nanoparticles/administration & dosage , Nanoparticles/chemistry , RNA, Messenger/administration & dosage , RNA, Messenger/chemistry , Treatment Outcome , Triglycerides/metabolism
5.
J Hepatol ; 74(6): 1416-1428, 2021 06.
Article in English | MEDLINE | ID: mdl-33340584

ABSTRACT

BACKGROUND & AIMS: Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a rare lethal autosomal recessive liver disorder caused by loss-of-function variations of the ABCB4 gene, encoding a phosphatidylcholine transporter (ABCB4/MDR3). Currently, no effective treatment exists for PFIC3 outside of liver transplantation. METHODS: We have produced and screened chemically and genetically modified mRNA variants encoding human ABCB4 (hABCB4 mRNA) encapsulated in lipid nanoparticles (LNPs). We examined their pharmacological effects in a cell-based model and in a new in vivo mouse model resembling human PFIC3 as a result of homozygous disruption of the Abcb4 gene in fibrosis-susceptible BALB/c.Abcb4-/- mice. RESULTS: We show that treatment with liver-targeted hABCB4 mRNA resulted in de novo expression of functional hABCB4 protein and restored phospholipid transport in cultured cells and in PFIC3 mouse livers. Importantly, repeated injections of the hABCB4 mRNA effectively rescued the severe disease phenotype in young Abcb4-/- mice, with rapid and dramatic normalisation of all clinically relevant parameters such as inflammation, ductular reaction, and liver fibrosis. Synthetic mRNA therapy also promoted favourable hepatocyte-driven liver regeneration to restore normal homeostasis, including liver weight, body weight, liver enzymes, and portal vein blood pressure. CONCLUSIONS: Our data provide strong preclinical proof-of-concept for hABCB4 mRNA therapy as a potential treatment option for patients with PFIC3. LAY SUMMARY: This report describes the development of an innovative mRNA therapy as a potential treatment for PFIC3, a devastating rare paediatric liver disease with no treatment options except liver transplantation. We show that administration of our mRNA construct completely rescues severe liver disease in a genetic model of PFIC3 in mice.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/deficiency , Cholestasis, Intrahepatic/drug therapy , Cholestasis, Intrahepatic/genetics , Gene Deletion , Liposomes/chemistry , Nanoparticle Drug Delivery System/chemistry , Nanoparticles/chemistry , Phenotype , RNA, Messenger/administration & dosage , ATP Binding Cassette Transporter, Subfamily B/administration & dosage , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Animals , Cholestasis, Intrahepatic/metabolism , Disease Models, Animal , HEK293 Cells , Homozygote , Humans , Liver/metabolism , Mice , Mice, Inbred BALB C , Mice, Knockout , RNA, Messenger/genetics , Transfection , Treatment Outcome , ATP-Binding Cassette Sub-Family B Member 4
6.
Proc Natl Acad Sci U S A ; 116(48): 24075-24083, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31712433

ABSTRACT

Messenger RNAs (mRNAs) encode information in both their primary sequence and their higher order structure. The independent contributions of factors like codon usage and secondary structure to regulating protein expression are difficult to establish as they are often highly correlated in endogenous sequences. Here, we used 2 approaches, global inclusion of modified nucleotides and rational sequence design of exogenously delivered constructs, to understand the role of mRNA secondary structure independent from codon usage. Unexpectedly, highly expressed mRNAs contained a highly structured coding sequence (CDS). Modified nucleotides that stabilize mRNA secondary structure enabled high expression across a wide variety of primary sequences. Using a set of eGFP mRNAs with independently altered codon usage and CDS structure, we find that the structure of the CDS regulates protein expression through changes in functional mRNA half-life (i.e., mRNA being actively translated). This work highlights an underappreciated role of mRNA secondary structure in the regulation of mRNA stability.


Subject(s)
Protein Biosynthesis/physiology , RNA Stability , RNA, Messenger/chemistry , Half-Life , HeLa Cells , Humans , Nucleic Acid Conformation , Proteins/metabolism
7.
Anal Chem ; 91(13): 8500-8506, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31129964

ABSTRACT

Characterization of mRNA sequences is a critical aspect of mRNA drug development and regulatory filing. Herein, we developed a novel bottom-up oligonucleotide sequence mapping workflow combining multiple endonucleases that cleave mRNA at different frequencies. RNase T1, colicin E5, and mazF were applied in parallel to provide complementary sequence coverage for large mRNAs. Combined use of multiple endonucleases resulted in significantly improved sequence coverage: greater than 70% sequence coverage was achieved on mRNAs near 3000 nucleotides long. Oligonucleotide mapping simulations with large human RNA databases demonstrate that the proposed workflow can positively identify a single correct sequence from hundreds of similarly sized sequences. In addition, the workflow is sensitive and specific enough to detect minor sequence impurities such as single nucleotide polymorphisms (SNPs) with a sensitivity of less than 1%. LC-MS/MS-based oligonucleotide sequence mapping can serve as an orthogonal sequence characterization method to techniques such as Sanger sequencing or next-generation sequencing (NGS), providing high-throughput sequence identification and sensitive impurity detection.


Subject(s)
Chromatography, Liquid/methods , Erythropoietin/metabolism , Oligonucleotides/analysis , Polymorphism, Single Nucleotide , RNA, Messenger/metabolism , Tandem Mass Spectrometry/methods , alpha Catenin/metabolism , Colicins/metabolism , DNA-Binding Proteins/metabolism , Endoribonucleases/metabolism , Erythropoietin/genetics , Escherichia coli Proteins/metabolism , High-Throughput Nucleotide Sequencing , Humans , RNA, Messenger/genetics , Ribonuclease T1/metabolism , Sequence Analysis, RNA , Software , alpha Catenin/genetics
8.
Am J Hum Genet ; 104(4): 625-637, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30879639

ABSTRACT

Fabry disease is an X-linked lysosomal storage disease caused by loss of alpha galactosidase A (α-Gal A) activity and is characterized by progressive accumulation of globotriaosylceramide and its analogs in all cells and tissues. Although enzyme replacement therapy (ERT) is considered standard of care, the long-term effects of ERT on renal and cardiac manifestations remain uncertain and thus novel therapies are desirable. We herein report preclinical studies evaluating systemic messenger RNA (mRNA) encoding human α-Gal A in wild-type (WT) mice, α-Gal A-deficient mice, and WT non-human primates (NHPs). The pharmacokinetics and distribution of h-α-Gal A mRNA encoded protein in WT mice demonstrated prolonged half-lives of α-Gal A in tissues and plasma. Single intravenous administration of h-α-Gal A mRNA to Gla-deficient mice showed dose-dependent protein activity and substrate reduction. Moreover, long duration (up to 6 weeks) of substrate reductions in tissues and plasma were observed after a single injection. Furthermore, repeat i.v. administration of h-α-Gal A mRNA showed a sustained pharmacodynamic response and efficacy in Fabry mice model. Lastly, multiple administrations to non-human primates confirmed safety and translatability. Taken together, these studies across species demonstrate preclinical proof-of-concept of systemic mRNA therapy for the treatment of Fabry disease and this approach may be useful for other lysosomal storage disorders.


Subject(s)
Fabry Disease/genetics , Fabry Disease/therapy , RNA, Messenger/therapeutic use , alpha-Galactosidase/genetics , Animals , Disease Models, Animal , Endocytosis , Enzyme Replacement Therapy , Genetic Therapy , Humans , Lipids/chemistry , Lysosomes/metabolism , Macaca fascicularis , Male , Mice , Mice, Knockout , RNA, Messenger/pharmacokinetics , Tissue Distribution , Trihexosylceramides/metabolism
9.
Biochem Biophys Res Commun ; 512(2): 387-391, 2019 04 30.
Article in English | MEDLINE | ID: mdl-30902391

ABSTRACT

Despite its exceptionally low circulating concentration, apolipoprotein (apo) A-V is a potent modulator of plasma triacylglycerol levels. The secretion efficiency of nascent apoA-V was investigated in cultured cells transfected with mRNA. Following transfection of HepG2 cells with wild type apoA-V mRNA, apoA-V protein was detectable in cell lysates by 6 h. At 24 h post transfection, evidence of apoA-V secretion into media was obtained, although most apoA-V was recovered in the cell lysate fraction. By contrast, apoA-I was efficiently secreted into the culture medium. A positive correlation between culture medium fetal bovine serum content and the percentage of apoA-V recovered in conditioned media was observed. When transfected cells were cultured in serum-free media supplemented with increasing amounts of high density lipoprotein, a positive correlation with apoA-V secretion was observed. The data indicate that, following signal sequence cleavage, the bulk of nascent apoA-V remains cell associated. Transit of nascent apoA-V out of cultured cells is enhanced by the availability of extracellular lipid particle acceptors.


Subject(s)
Apolipoprotein A-V/genetics , Apolipoprotein A-V/metabolism , Lipoproteins, HDL/metabolism , Apolipoprotein A-V/chemistry , Biological Transport, Active , Culture Media , HEK293 Cells , Hep G2 Cells , Humans , Lipoproteins, HDL/blood , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL