Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Neuroscience ; 537: 189-204, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38036056

ABSTRACT

Rett syndrome (RTT) is a debilitating neurodevelopmental disorder caused by mutations in the X-linked methyl-CpG-binding protein 2 (MeCP2) gene, resulting in severe deficits in learning and memory. Alterations in synaptic plasticity have been reported in RTT, however most electrophysiological studies have been performed in male mice only, despite the fact that RTT is primarily found in females. In addition, most studies have focused on excitation, despite the emerging evidence for the important role of inhibition in learning and memory. Here, we performed an electrophysiological characterization in the CA1 region of the hippocampus in both males and females of RTT mouse models with a focus on neurogliaform (NGF) interneurons, given that they are the most abundant dendrite-targeting interneuron subtype in the hippocampus. We found that theta-burst stimulation (TBS) failed to induce long-term potentiation (LTP) in either pyramidal neurons or NGF interneurons in male or female RTT mice, with no apparent changes in short-term plasticity (STP). This failure to induce LTP was accompanied by excitation/inhibition (E/I) imbalances and altered excitability, in a sex- and cell-type specific manner. Specifically, NGF interneurons of male RTT mice displayed increased intrinsic excitability, a depolarized resting membrane potential, and decreased E/I balance, while in female RTT mice, the resting membrane potential was depolarized. Understanding the role of NGF interneurons in RTT animal models is crucial for developing targeted treatments to improve cognition in individuals with this disorder.


Subject(s)
Rett Syndrome , Male , Female , Mice , Animals , Rett Syndrome/genetics , Long-Term Potentiation , Methyl-CpG-Binding Protein 2/metabolism , Hippocampus/metabolism , Neuronal Plasticity/genetics , Disease Models, Animal
2.
Physiol Rev ; 103(2): 1095-1135, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36302178

ABSTRACT

Synaptic inhibition plays a crucial role in regulating neuronal excitability, which is the foundation of nervous system function. This inhibition is largely mediated by the neurotransmitters GABA and glycine that activate Cl--permeable ion channels, which means that the strength of inhibition depends on the Cl- gradient across the membrane. In neurons, the Cl- gradient is primarily mediated by two secondarily active cation-chloride cotransporters (CCCs), NKCC1 and KCC2. CCC-mediated regulation of the neuronal Cl- gradient is critical for healthy brain function, as dysregulation of CCCs has emerged as a key mechanism underlying neurological disorders including epilepsy, neuropathic pain, and autism spectrum disorder. This review begins with an overview of neuronal chloride transporters before explaining the dependent relationship between these CCCs, Cl- regulation, and inhibitory synaptic transmission. We then discuss the evidence for how CCCs can be regulated, including by activity and their protein interactions, which underlie inhibitory synaptic plasticity. For readers who may be interested in conducting experiments on CCCs and neuronal excitability, we have included a section on techniques for estimating and recording intracellular Cl-, including their advantages and limitations. Although the focus of this review is on neurons, we also examine how Cl- is regulated in glial cells, which in turn regulate neuronal excitability through the tight relationship between this nonneuronal cell type and synapses. Finally, we discuss the relatively extensive and growing literature on how CCC-mediated neuronal excitability contributes to neurological disorders.


Subject(s)
Autism Spectrum Disorder , Nervous System Diseases , Symporters , Humans , Chlorides/metabolism , Symporters/metabolism , Neurons/metabolism , Nervous System Diseases/metabolism , Membrane Transport Proteins
3.
Science ; 374(6568): eabk2055, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34735259

ABSTRACT

During development, neural circuit formation requires the stabilization of active γ-aminobutyric acid­mediated (GABAergic) synapses and the elimination of inactive ones. Here, we demonstrate that, although the activation of postsynaptic GABA type A receptors (GABAARs) and adenosine A2A receptors (A2ARs) stabilizes GABAergic synapses, only A2AR activation is sufficient. Both GABAAR- and A2AR-dependent signaling pathways act synergistically to produce adenosine 3',5'-monophosphate through the recruitment of the calcium­calmodulin­adenylyl cyclase pathway. Protein kinase A, thus activated, phosphorylates gephyrin on serine residue 303, which is required for GABAAR stabilization. Finally, the stabilization of pre- and postsynaptic GABAergic elements involves the interaction between gephyrin and the synaptogenic membrane protein Slitrk3. We propose that A2ARs act as detectors of active GABAergic synapses releasing GABA, adenosine triphosphate, and adenosine to regulate their fate toward stabilization or elimination.


Subject(s)
Adenosine/metabolism , Hippocampus/growth & development , Neurons/physiology , Receptor, Adenosine A2A/metabolism , Signal Transduction , Synapses/physiology , gamma-Aminobutyric Acid/metabolism , Adenosine A2 Receptor Antagonists , Adenosine Triphosphate/metabolism , Animals , Calcium/metabolism , Cognition , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Hippocampus/metabolism , Male , Membrane Proteins/metabolism , Mice , Nerve Tissue Proteins , Phosphorylation , Receptor, Adenosine A2A/genetics , Receptors, GABA-A/metabolism
4.
J Physiol ; 599(2): 485-492, 2021 01.
Article in English | MEDLINE | ID: mdl-32162694

ABSTRACT

Kainate receptors (KARs) are glutamate-type receptors that mediate both canonical ionotropic currents and non-canonical metabotropic signalling. While KARs are expressed widely throughout the brain, synaptic KAR currents have only been recorded at a limited set of synapses, and the KAR currents that have been recorded are relatively small and slow, which has led to the question, what is the functional significance of KARs? While the KAR current itself is relatively modest, its impact on inhibition in the hippocampus can be profound. In the CA1 region of the hippocampus, presynaptic KAR activation bidirectionally regulates γ-aminobutyric acid (GABA) release in a manner that depends on the glutamate concentration; lower levels of glutamate facilitate GABA release via an ionotropic pathway, while higher levels of glutamate depress GABA release via a metabotropic pathway. Postsynaptic interneuron KAR activation increases spike frequency through an ionotropic current, which in turn can strengthen inhibition. In the CA3 region, postsynaptic KAR activation in pyramidal neurons also strengthens inhibition, but in this case through a metabotropic pathway which regulates the neuronal chloride gradient and hyperpolarizes the reversal potential for GABA (EGABA ). Taken together, the evidence for KAR-mediated regulation of the strength of inhibition via pre- and postsynaptic mechanisms provides compelling evidence that KARs are ideally positioned to regulate excitation-inhibition balance - through sensing the excitatory tone and concomitantly tuning the strength of inhibition.


Subject(s)
Hippocampus , Receptors, Kainic Acid , Hippocampus/metabolism , Interneurons/metabolism , Pyramidal Cells/metabolism , Receptors, Kainic Acid/metabolism , Synapses/metabolism
5.
Trends Pharmacol Sci ; 41(12): 897-899, 2020 12.
Article in English | MEDLINE | ID: mdl-33097285

ABSTRACT

Finely tuned excitation-inhibition balance is essential for proper brain function, and loss of balance resulting from reduced synaptic inhibition is associated with neurological disorders. Savardi and colleagues have discovered a novel inhibitor of a cation-chloride transporter that is required for synaptic inhibition, and which restores behaviors associated with Down syndrome (DS) and autism spectrum disorder (ASD).

6.
Brain ; 143(3): 800-810, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32203578

ABSTRACT

Amyotrophic lateral sclerosis is a fatal disease resulting from motor neuron degeneration in the cortex and spinal cord. Cortical hyperexcitability is a hallmark feature of amyotrophic lateral sclerosis and is accompanied by decreased intracortical inhibition. Using electrophysiological patch-clamp recordings, we revealed parvalbumin interneurons to be hypoactive in the late pre-symptomatic SOD1*G93A mouse model of amyotrophic lateral sclerosis. We discovered that using adeno-associated virus-mediated delivery of chemogenetic technology targeted to increase the activity of the interneurons within layer 5 of the primary motor cortex, we were able to rescue intracortical inhibition and reduce pyramidal neuron hyperexcitability. Increasing the activity of interneurons in the layer 5 of the primary motor cortex was effective in delaying the onset of amyotrophic lateral sclerosis-associated motor deficits, slowing symptom progression, preserving neuronal populations, and increasing the lifespan of SOD1*G93A mice. Taken together, this study provides novel insights into the pathogenesis and treatment of amyotrophic lateral sclerosis.


Subject(s)
Amyotrophic Lateral Sclerosis/physiopathology , Interneurons/physiology , Motor Cortex/physiology , Neural Inhibition/physiology , Adenoviridae , Animals , Disease Progression , Female , Male , Mice , Mice, Transgenic , Motor Skills/physiology , Patch-Clamp Techniques , Pyramidal Cells/physiology , Superoxide Dismutase-1/genetics , Transfection
7.
Nat Commun ; 8(1): 1776, 2017 11 24.
Article in English | MEDLINE | ID: mdl-29176664

ABSTRACT

The K+-Cl- co-transporter KCC2 (SLC12A5) tunes the efficacy of GABAA receptor-mediated transmission by regulating the intraneuronal chloride concentration [Cl-]i. KCC2 undergoes activity-dependent regulation in both physiological and pathological conditions. The regulation of KCC2 by synaptic excitation is well documented; however, whether the transporter is regulated by synaptic inhibition is unknown. Here we report a mechanism of KCC2 regulation by GABAA receptor (GABAAR)-mediated transmission in mature hippocampal neurons. Enhancing GABAAR-mediated inhibition confines KCC2 to the plasma membrane, while antagonizing inhibition reduces KCC2 surface expression by increasing the lateral diffusion and endocytosis of the transporter. This mechanism utilizes Cl- as an intracellular secondary messenger and is dependent on phosphorylation of KCC2 at threonines 906 and 1007 by the Cl--sensing kinase WNK1. We propose this mechanism contributes to the homeostasis of synaptic inhibition by rapidly adjusting neuronal [Cl-]i to GABAAR activity.


Subject(s)
Chlorides/metabolism , Receptors, GABA-A/metabolism , Symporters/metabolism , WNK Lysine-Deficient Protein Kinase 1/metabolism , Animals , Cell Membrane/genetics , Cell Membrane/metabolism , Cells, Cultured , Endocytosis , Hippocampus/cytology , Hippocampus/enzymology , Hippocampus/metabolism , Male , Mice , Mice, Inbred C57BL , Neurons/enzymology , Neurons/metabolism , Phosphorylation , Rats , Rats, Sprague-Dawley , Receptors, GABA-A/genetics , Signal Transduction , Symporters/genetics , Synaptic Transmission , WNK Lysine-Deficient Protein Kinase 1/genetics , K Cl- Cotransporters
8.
J Biol Chem ; 292(15): 6190-6201, 2017 04 14.
Article in English | MEDLINE | ID: mdl-28235805

ABSTRACT

Synaptic inhibition depends on a transmembrane gradient of chloride, which is set by the neuron-specific K+-Cl- co-transporter KCC2. Reduced KCC2 levels in the neuronal membrane contribute to the generation of epilepsy, neuropathic pain, and autism spectrum disorders; thus, it is important to characterize the mechanisms regulating KCC2 expression. In the present study, we determined the role of KCC2-protein interactions in regulating total and surface membrane KCC2 expression. Using quantitative immunofluorescence in cultured mouse hippocampal neurons, we discovered that the kainate receptor subunit GluK2 and the auxiliary subunit Neto2 significantly increase the total KCC2 abundance in neurons but that GluK2 exclusively increases the abundance of KCC2 in the surface membrane. Using a live cell imaging assay, we further determined that KCC2 recycling primarily occurs within 1-2 h and that GluK2 produces an ∼40% increase in the amount of KCC2 recycled to the membrane during this time period. This GluK2-mediated increase in surface recycling translated to a significant increase in KCC2 expression in the surface membrane. Moreover, we found that KCC2 recycling is enhanced by protein kinase C-mediated phosphorylation of the GluK2 C-terminal residues Ser-846 and Ser-868. Lastly, using gramicidin-perforated patch clamp recordings, we found that the GluK2-mediated increase in KCC2 recycling to the surface membrane translates to a hyperpolarization of the reversal potential for GABA (EGABA). In conclusion, our results have revealed a mechanism by which kainate receptors regulate KCC2 expression in the hippocampus.


Subject(s)
Cell Membrane/metabolism , Hippocampus/metabolism , Membrane Potentials/physiology , Neurons/metabolism , Receptors, Kainic Acid/metabolism , Symporters/metabolism , Animals , Cell Membrane/genetics , Cells, Cultured , Hippocampus/cytology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Knockout , Neurons/cytology , Receptors, Kainic Acid/genetics , Symporters/genetics , K Cl- Cotransporters , GluK2 Kainate Receptor
9.
Proc Natl Acad Sci U S A ; 112(3): 851-6, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25561528

ABSTRACT

Glioblastoma (GBM) is a cancer comprised of morphologically, genetically, and phenotypically diverse cells. However, an understanding of the functional significance of intratumoral heterogeneity is lacking. We devised a method to isolate and functionally profile tumorigenic clones from patient glioblastoma samples. Individual clones demonstrated unique proliferation and differentiation abilities. Importantly, naïve patient tumors included clones that were temozolomide resistant, indicating that resistance to conventional GBM therapy can preexist in untreated tumors at a clonal level. Further, candidate therapies for resistant clones were detected with clone-specific drug screening. Genomic analyses revealed genes and pathways that associate with specific functional behavior of single clones. Our results suggest that functional clonal profiling used to identify tumorigenic and drug-resistant tumor clones will lead to the discovery of new GBM clone-specific treatment strategies.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cell Line, Tumor , Dacarbazine/analogs & derivatives , Dacarbazine/therapeutic use , Drug Resistance, Neoplasm , Glioblastoma/drug therapy , Glioblastoma/genetics , Humans , Single-Cell Analysis , Temozolomide
10.
Cell Rep ; 7(6): 1762-70, 2014 Jun 26.
Article in English | MEDLINE | ID: mdl-24910435

ABSTRACT

KCC2 is the neuron-specific K+-Cl(-) cotransporter required for maintaining low intracellular Cl(-), which is essential for fast inhibitory synaptic transmission in the mature CNS. Despite the requirement of KCC2 for inhibitory synaptic transmission, understanding of the cellular mechanisms that regulate KCC2 expression and function is rudimentary. We examined KCC2 in its native protein complex in vivo to identify key KCC2-interacting partners that regulate KCC2 function. Using blue native-polyacrylamide gel electrophoresis (BN-PAGE), we determined that native KCC2 exists in a macromolecular complex with kainate-type glutamate receptors (KARs). We found that KAR subunits are required for KCC2 oligomerization and surface expression. In accordance with this finding, acute and chronic genetic deletion of KARs decreased KCC2 function and weakened synaptic inhibition in hippocampal neurons. Our results reveal KARs as regulators of KCC2, significantly advancing our growing understanding of the tight interplay between excitation and inhibition.


Subject(s)
Chlorides/metabolism , Hippocampus/metabolism , Neurons/metabolism , Receptors, Kainic Acid/metabolism , Symporters/metabolism , Animals , Female , Hippocampus/cytology , Homeostasis , Male , Mice, Inbred C57BL , Neurons/cytology , K Cl- Cotransporters
11.
Proc Natl Acad Sci U S A ; 110(9): 3561-6, 2013 Feb 26.
Article in English | MEDLINE | ID: mdl-23401525

ABSTRACT

KCC2 is a neuron-specific K(+)-Cl(-) cotransporter that is essential for Cl(-) homeostasis and fast inhibitory synaptic transmission in the mature CNS. Despite the critical role of KCC2 in neurons, the mechanisms regulating its function are not understood. Here, we show that KCC2 is critically regulated by the single-pass transmembrane protein neuropilin and tolloid like-2 (Neto2). Neto2 is required to maintain the normal abundance of KCC2 and specifically associates with the active oligomeric form of the transporter. Loss of the Neto2:KCC2 interaction reduced KCC2-mediated Cl(-) extrusion, resulting in decreased synaptic inhibition in hippocampal neurons.


Subject(s)
Chlorides/metabolism , Hippocampus/cytology , Membrane Proteins/deficiency , Neurons/metabolism , Symporters/metabolism , Action Potentials/physiology , Amino Acid Sequence , Animals , Biological Transport , Mass Spectrometry , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Neurons/cytology , Protein Binding , Protein Structure, Quaternary , Protein Structure, Tertiary , Structure-Activity Relationship , Symporters/chemistry , gamma-Aminobutyric Acid/metabolism , K Cl- Cotransporters
SELECTION OF CITATIONS
SEARCH DETAIL
...