Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anticancer Agents Med Chem ; 18(11): 1629-1638, 2018.
Article in English | MEDLINE | ID: mdl-29745344

ABSTRACT

BACKGROUND: Recent reports have demonstrated the role of the G Protein-Coupled Estrogen Receptor 1 (GPER1) on the proliferation of breast cancer. The coupling of GPER1 to estrogen triggers cellular signaling pathways related to cell proliferation. OBJECTIVE: Develop new therapeutic strategies against breast cancer. METHOD: We performed in silico studies to explore the binding mechanism of a set of G15 /G1 analogue compounds. We included a carboxyl group instead of the acetyl group from G1 to form amides with several moieties to increase affinity on GPER1. The designed ligands were submitted to ligand-based and structure-based virtual screening to get insights into the binding mechanism of the best designed compound and phenol red on GPER1. RESULTS: According to the in silico studies, the best molecule was named G1-PABA ((3aS,4R,9bR)-4-(6- bromobenzo[d][1,3]dioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-carboxylic acid). It was synthesized and assayed in vitro in breast cancer (MCF-7 and MDA-MB-231) and normal (MCF-10A) cell lines. Experimental studies showed that the target compound was able to decrease cell proliferation, IC50 values of 15.93 µM, 52.92 µM and 32.45 µM in the MCF-7, MDA-MB-231 and MCF-10A cell lines, respectively, after 72 h of treatment. The compound showed better IC50 values without phenol red, suggesting that phenol red interfere with the G1-PABA action at GPER1, as observed through in silico studies, which is present in MCF-7 cells according to PCR studies and explains the cell proliferation effects. CONCLUSION: Concentration-dependent inhibition of cell proliferation occurred with G1-PABA in the assayed cell lines and could be due to its action on GPER1.


Subject(s)
Antineoplastic Agents/pharmacology , Benzodioxoles/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Drug Evaluation, Preclinical , Ligands , Molecular Dynamics Simulation , Quinolines/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzodioxoles/chemical synthesis , Benzodioxoles/chemistry , Breast Neoplasms/metabolism , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Molecular Structure , Quinolines/chemical synthesis , Quinolines/chemistry , Receptors, G-Protein-Coupled/metabolism , Structure-Activity Relationship , Thermodynamics , Tumor Cells, Cultured
2.
J Enzyme Inhib Med Chem ; 31(sup3): 140-149, 2016.
Article in English | MEDLINE | ID: mdl-27483122

ABSTRACT

Epigenetic alterations are associated with cancer and their targeting is a promising approach for treatment of this disease. Among current epigenetic drugs, histone deacetylase (HDAC) inhibitors induce changes in gene expression that can lead to cell death in tumors. Valproic acid (VPA) is a HDAC inhibitor that has antitumor activity at mM range. However, it is known that VPA is a hepatotoxic drug. Therefore, the aim of this study was to design a set of VPA derivatives adding the arylamine core of the suberoylanilide hydroxamic acid (SAHA) with different substituents at its carboxyl group. These derivatives were submitted to docking simulations to select the most promising compound. The compound 2 (N-(2-hydroxyphenyl)-2-propylpentanamide) was the best candidate to be synthesized and evaluated in vitro as an anti-cancer agent against HeLa, rhabdomyosarcoma and breast cancer cell lines. Compound 2 showed a better IC50 (µM range) than VPA (mM range) on these cancer cells. And also, 2 was particularly effective on triple negative breast cancer cells. In conclusion, 2 is an example of drugs designed in silico that show biological properties against human cancer difficult to treat as triple negative breast cancer.


Subject(s)
Amides/pharmacology , Antineoplastic Agents/pharmacology , Breast Neoplasms/pathology , Computer Simulation , Drug Design , Pentanes/pharmacology , Rhabdomyosarcoma/pathology , Valproic Acid/analogs & derivatives , Amides/chemical synthesis , Amides/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HeLa Cells , Histone Deacetylases/metabolism , Humans , MCF-7 Cells , Models, Molecular , Molecular Structure , Pentanes/chemical synthesis , Pentanes/chemistry , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...