Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Immunity ; 54(8): 1758-1771.e7, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34256013

ABSTRACT

Apoptosis can potently defend against intracellular pathogens by directly killing microbes and eliminating their replicative niche. However, the reported ability of Mycobacterium tuberculosis to restrict apoptotic pathways in macrophages in vitro has led to apoptosis being dismissed as a host-protective process in tuberculosis despite a lack of in vivo evidence. Here we define crucial in vivo functions of the death receptor-mediated and BCL-2-regulated apoptosis pathways in mediating protection against tuberculosis by eliminating distinct populations of infected macrophages and neutrophils and priming T cell responses. We further show that apoptotic pathways can be targeted therapeutically with clinical-stage compounds that antagonize inhibitor of apoptosis (IAP) proteins to promote clearance of M. tuberculosis in mice. These findings reveal that any inhibition of apoptosis by M. tuberculosis is incomplete in vivo, advancing our understanding of host-protective responses to tuberculosis (TB) and revealing host pathways that may be targetable for treatment of disease.


Subject(s)
Apoptosis/immunology , Macrophages/immunology , Mycobacterium tuberculosis/immunology , Neutrophils/immunology , Tuberculosis, Pulmonary/immunology , Animals , Caspase 8/genetics , Caspase 8/metabolism , Cell Line , Dipeptides/therapeutic use , Humans , Indoles/therapeutic use , Lymphocyte Activation/immunology , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/microbiology , Protein Kinases/genetics , Protein Kinases/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , T-Lymphocytes/immunology , Thiazoles/therapeutic use , Tuberculosis, Pulmonary/drug therapy
2.
Cell Rep ; 14(1): 68-81, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26725120

ABSTRACT

Naturally acquired immunity to malaria develops only after years of repeated exposure to Plasmodium parasites. Despite the key role antibodies play in protection, the cellular processes underlying the slow acquisition of immunity remain unknown. Using mouse models, we show that severe malaria infection inhibits the establishment of germinal centers (GCs) in the spleen. We demonstrate that infection induces high frequencies of T follicular helper (Tfh) cell precursors but results in impaired Tfh cell differentiation. Despite high expression of Bcl-6 and IL-21, precursor Tfh cells induced during infection displayed low levels of PD-1 and CXCR5 and co-expressed Th1-associated molecules such as T-bet and CXCR3. Blockade of the inflammatory cytokines TNF and IFN-γ or T-bet deletion restored Tfh cell differentiation and GC responses to infection. Thus, this study demonstrates that the same pro-inflammatory mediators that drive severe malaria pathology have detrimental effects on the induction of protective B cell responses.


Subject(s)
B-Lymphocytes/immunology , Germinal Center/immunology , Malaria/immunology , Plasmodium/immunology , Th1 Cells/immunology , Animals , Cytokines/genetics , Cytokines/immunology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , Malaria/genetics , Mice , Mice, Knockout , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , Proto-Oncogene Proteins c-bcl-6 , Receptors, CXCR3/genetics , Receptors, CXCR3/immunology , Receptors, CXCR5/genetics , Receptors, CXCR5/immunology , T-Box Domain Proteins/genetics , T-Box Domain Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL