Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Invest Dermatol ; 144(4): 862-873.e4, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37852357

ABSTRACT

Cutaneous leishmaniasis affects 1 million people worldwide annually. Although conventional treatments primarily target the parasite, there is growing interest in host immune modulation. In this study, we investigated the impact of synthetic ß-carboline harmine (ACB1801), previously shown to be immunoregulatory in cancer, on the pathology caused by a drug-resistant Leishmania major strain causing persistent cutaneous lesions. Exposure to ACB1801 in vitro had a modest impact on parasite burden within host macrophages. Moreover, it significantly increased major histocompatibility complex II and costimulatory molecule expression on infected dendritic cells, suggesting an enhanced immune response. In vivo, ACB1801 monotherapy led to a substantial reduction in lesion development and parasite burden in infected C57BL/6 mice, comparable with efficacy of amphotericin B. Transcriptomics analysis further supported ACB1801 immunomodulatory effects, revealing an enrichment of TNF-α, IFN-γ, and major histocompatibility complex II antigen presentation signatures in the draining lymph nodes of treated mice. Flow cytometry analysis confirmed an increased frequency (1.5×) of protective CD4+IFN-γ+TNF-α+ T cells and a decreased frequency (2×) in suppressive IL-10+FoxP3- T cells at the site of infection and in draining lymph nodes. In addition, ACB1801 downregulated the aryl hydrocarbon receptor signaling, known to enhance immunosuppressive cytokines. Thus, these results suggest a potential use for ACB1801 alone or in combination therapy for cutaneous leishmaniasis.


Subject(s)
Leishmania major , Leishmaniasis, Cutaneous , Leishmaniasis , Humans , Animals , Mice , Harmine/pharmacology , Harmine/therapeutic use , Tumor Necrosis Factor-alpha , Mice, Inbred C57BL , Immunity , Mice, Inbred BALB C
2.
Front Cell Infect Microbiol ; 12: 941888, 2022.
Article in English | MEDLINE | ID: mdl-35992159

ABSTRACT

Leishmania RNA virus 1 (LRV1) is a double-stranded RNA virus found in some strains of the human protozoan parasite Leishmania, the causative agent of leishmaniasis, a neglected tropical disease. Interestingly, the presence of LRV1 inside Leishmania constitutes an important virulence factor that worsens the leishmaniasis outcome in a type I interferon (IFN)-dependent manner and contributes to treatment failure. Understanding how macrophages respond toward Leishmania alone or in combination with LRV1 as well as the role that type I IFNs may play during infection is fundamental to oversee new therapeutic strategies. To dissect the macrophage response toward infection, RNA sequencing was performed on murine wild-type and Ifnar-deficient bone marrow-derived macrophages infected with Leishmania guyanensis (Lgy) devoid or not of LRV1. Additionally, macrophages were treated with poly I:C (mimetic virus) or with type I IFNs. By implementing a weighted gene correlation network analysis, the groups of genes (modules) with similar expression patterns, for example, functionally related, coregulated, or the members of the same functional pathway, were identified. These modules followed patterns dependent on Leishmania, LRV1, or Leishmania exacerbated by the presence of LRV1. Not only the visualization of how individual genes were embedded to form modules but also how different modules were related to each other were observed. Thus, in the context of the observed hyperinflammatory phenotype associated to the presence of LRV1, it was noted that the biomarkers tumor-necrosis factor α (TNF-α) and the interleukin 6 (IL-6) belonged to different modules and that their regulating specific Src-family kinases were segregated oppositely. In addition, this network approach revealed the strong and sustained effect of LRV1 on the macrophage response and genes that had an early, late, or sustained impact during infection, uncovering the dynamics of the IFN response. Overall, this study contributed to shed light and dissect the intricate macrophage response toward infection by the Leishmania-LRV1 duo and revealed the crosstalk between modules made of coregulated genes and provided a new resource that can be further explored to study the impact of Leishmania on the macrophage response.


Subject(s)
Interferon Type I , Leishmania , Leishmaniasis , Leishmaniavirus , Macrophages , Animals , Humans , Interferon Type I/immunology , Leishmania/virology , Leishmaniasis/immunology , Leishmaniasis/parasitology , Leishmaniasis/virology , Macrophages/immunology , Macrophages/parasitology , Mice
3.
Front Cell Infect Microbiol ; 12: 944819, 2022.
Article in English | MEDLINE | ID: mdl-36034693

ABSTRACT

Inducible nitric oxide synthase (iNOS) is essential to the production of nitric oxide (NO), an efficient effector molecule against intracellular human pathogens such as Leishmania protozoan parasites. Some strains of Leishmania are known to bear a viral endosymbiont termed Leishmania RNA virus 1 (LRV1). Recognition of LRV1 by the innate immune sensor Toll-like receptor-3 (TLR3) leads to conditions worsening the disease severity in mice. This process is governed by type I interferon (type I IFNs) arising downstream of TLR3 stimulation and favoring the formation of secondary metastatic lesions. The formation of these lesions is mediated by the inflammatory cytokine IL-17A and occurs in the absence, or low level of, protective cytokine IFN-γ. Here, we described that the presence of LRV1 led to the initial expression of iNOS and low production of NO that failed to control infection. We subsequently showed that LRV1-triggered type I IFN was essential but insufficient to induce robust iNOS induction, which requires strong activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Leishmania guyanensis carrying LRV1 (LgyLRV1+) parasites mitigated strong iNOS production by limiting NF-kB activation via the induction of tumor necrosis factor-alpha-induced protein 3 (TNFAIP3), also known as A20. Moreover, our data suggested that production of LRV1-induced iNOS could be correlated with parasite dissemination and metastasis via elevated secretion of IL-17A in the draining lymph nodes. Our findings support an additional strategy by which LRV1-bearing Leishmania guyanensis evaded killing by nitric oxide and suggest that low levels of LRV1-induced NO might contribute to parasite metastasis.


Subject(s)
Leishmania guyanensis , Leishmania , Nitric Oxide Synthase Type II , Animals , Cytokines , Humans , Interleukin-17 , Leishmania guyanensis/virology , Leishmaniavirus , Mice , NF-kappa B , Nitric Oxide , Nitric Oxide Synthase Type II/metabolism , Toll-Like Receptor 3
4.
Front Cell Infect Microbiol ; 12: 941860, 2022.
Article in English | MEDLINE | ID: mdl-36034709

ABSTRACT

The lymphatic system plays a crucial role in mounting immune response against intracellular pathogens, and recent studies have documented its role in facilitating tumor dissemination linked largely with cancer cells. However, in mucocutaneous leishmaniasis (MCL) caused by Leishmania Viannia subgenus showing infectious metastasis and resulting in severe distant secondary lesions, the route of escape of these parasites to secondary sites has not yet been investigated in detail. Our results demonstrated that when infection was associated with inflammation and additionally exacerbated by the presence of dsRNA viral endosymbiont (LRV1), lymphatic vessels could serve as efficient routes for infected cells to egress from the primary site and colonize distant organs. We challenged this hypothesis by using the intracellular Leishmania protozoan parasites Leishmania guyanensis (Lgy) associated with or without a dsRNA viral endosymbiont, exacerbating the infection and responsible for a strong inflammatory response, and favoring metastasis of the infection. We analyzed possible cargo cells and the routes of dissemination through flow cytometry, histological analysis, and in vivo imaging in our metastatic model to show that parasites disseminated not only intracellularly but also as free extracellular parasites using migrating immune cells, lymph nodes (LNs), and lymph vessels, and followed intricate connections of draining and non-draining lymph node to finally end up in the blood and in distant skin, causing new lesions.


Subject(s)
Leishmania braziliensis , Leishmania , Leishmaniasis, Mucocutaneous , Neoplasms , Humans , Lymphatic System
5.
Front Immunol ; 13: 882867, 2022.
Article in English | MEDLINE | ID: mdl-35651602

ABSTRACT

Mitochondria regulate steroid hormone synthesis, and in turn sex hormones regulate mitochondrial function for maintaining cellular homeostasis and controlling inflammation. This crosstalk can explain sex differences observed in several pathologies such as in metabolic or inflammatory disorders. Nod-like receptor X1 (NLRX1) is a mitochondria-associated innate receptor that could modulate metabolic functions and attenuates inflammatory responses. Here, we showed that in an infectious model with the human protozoan parasite, Leishmania guyanensis, NLRX1 attenuated inflammation in females but not in male mice. Analysis of infected female and male bone marrow derived macrophages showed both sex- and genotype-specific differences in both inflammatory and metabolic profiles with increased type I interferon production, mitochondrial respiration, and glycolytic rate in Nlrx1-deficient female BMDMs in comparison to wild-type cells, while no differences were observed between males. Transcriptomics of female and male BMDMs revealed an altered steroid hormone signaling in Nlrx1-deficient cells, and a "masculinization" of Nlrx1-deficient female BMDMs. Thus, our findings suggest that NLRX1 prevents uncontrolled inflammation and metabolism in females and therefore may contribute to the sex differences observed in infectious and inflammatory diseases.


Subject(s)
Mitochondrial Proteins , NLR Proteins , Animals , Female , Hormones/metabolism , Inflammation/metabolism , Male , Mice , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , NLR Proteins/metabolism
6.
PLoS Pathog ; 17(3): e1009422, 2021 03.
Article in English | MEDLINE | ID: mdl-33765083

ABSTRACT

The oxidative burst generated by the host immune system can restrict intracellular parasite entry and growth. While this burst leads to the induction of antioxidative enzymes, the molecular mechanisms and the consequences of this counter-response on the life of intracellular human parasites are largely unknown. The transcription factor NF-E2-related factor (NRF2) could be a key mediator of antioxidant signaling during infection due to the entry of parasites. Here, we showed that NRF2 was strongly upregulated in infection with the human Leishmania protozoan parasites, its activation was dependent on a NADPH oxidase 2 (NOX2) and SRC family of protein tyrosine kinases (SFKs) signaling pathway and it reprogrammed host cell metabolism. In inflammatory leishmaniasis caused by a viral endosymbiont inducing TNF-α in chronic leishmaniasis, NRF2 activation promoted parasite persistence but limited TNF-α production and tissue destruction. These data provided evidence of the dual role of NRF2 in protecting both the invading pathogen from reactive oxygen species and the host from an excess of the TNF-α destructive pro-inflammatory cytokine.


Subject(s)
Host-Parasite Interactions/physiology , Leishmania/metabolism , Leishmaniasis/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress/physiology , Animals , Inflammation/immunology , Inflammation/metabolism , Leishmania/immunology , Leishmaniasis/immunology , Mice , NF-E2-Related Factor 2/immunology , Signal Transduction/immunology
7.
Microb Cell ; 5(3): 137-149, 2018 Jan 14.
Article in English | MEDLINE | ID: mdl-29487860

ABSTRACT

The various symptomatic outcomes of cutaneous leishmaniasis relates to the type and potency of its underlying inflammatory responses. Presence of the cytoplasmic Leishmania RNA virus-1 (LRV1) within Leishmania guyanensis, worsens lesional inflammation and parasite burden, as the viral dsRNA genome acts as a potent innate immunogen stimulating Toll-Like-Receptor-3 (TLR3). Here we investigated other innate pattern recognition receptors capable of reacting to dsRNA and potentially contributing to LRV1-mediated inflammatory pathology. We included the cytoplasmic dsRNA sensors, namely, the RIG-like receptors (RLRs) and the inflammasome-dependent and -independent Nod-like-receptors (NLRs). Our study found no role for RLRs or inflammasome-dependent NLRs in the pathology of L. guyanensis infection irrespective of its LRV1-status. Further, neither LRV1-bearing L. guyanensis (LgyLRV1+) nor LRV1-negative L. guyanensis (LgyLRV1-) activated the inflammasome in vitro. Interestingly, similarly to L. donovani, L. guyanensis infection induced the up-regulation of the A20 protein, known to be involved in the evasion of inflammasome activation. Moreover, we observed that LgyLRV1+ promoted the transcription of inflammasome-independent NLRC2 (also called NOD2) and NLRC5. However, only NLRC2 showed some contribution to LRV1-dependent pathology. These data confirmed that the endosomal TLR3 pathway is the dominant route of LRV1-dependent signalling, thus excluding the cytosolic and inflammasome pathways. We postulate that avoidance of the inflammasome pathways is likely an important mechanism of virulence in Leishmania infection irrespective of the LRV1-status.

8.
Proc Natl Acad Sci U S A ; 114(19): 4987-4992, 2017 05 09.
Article in English | MEDLINE | ID: mdl-28439019

ABSTRACT

The presence of the endogenous Leishmania RNA virus 1 (LRV1) replicating stably within some parasite species has been associated with the development of more severe forms of leishmaniasis and relapses after drug treatment in humans. Here, we show that the disease-exacerbatory role of LRV1 relies on type I IFN (type I IFNs) production by macrophages and signaling in vivo. Moreover, infecting mice with the LRV1-cured Leishmania guyanensis (LgyLRV1- ) strain of parasites followed by type I IFN treatment increased lesion size and parasite burden, quantitatively reproducing the LRV1-bearing (LgyLRV1+ ) infection phenotype. This finding suggested the possibility that exogenous viral infections could likewise increase pathogenicity, which was tested by coinfecting mice with L. guyanensis and lymphocytic choriomeningitis virus (LCMV), or the sand fly-transmitted arbovirus Toscana virus (TOSV). The type I IFN antiviral response increased the pathology of L. guyanensis infection, accompanied by down-regulation of the IFN-γ receptor normally required for antileishmanial control. Further, LCMV coinfection of IFN-γ-deficient mice promoted parasite dissemination to secondary sites, reproducing the LgyLRV1+ metastatic phenotype. Remarkably, LCMV coinfection of mice that had healed from L. guyanensis infection induced reactivation of disease pathology, overriding the protective adaptive immune response. Our findings establish that type I IFN-dependent responses, arising from endogenous viral elements (dsRNA/LRV1), or exogenous coinfection with IFN-inducing viruses, are able to synergize with New World Leishmania parasites in both primary and relapse infections. Thus, viral infections likely represent a significant risk factor along with parasite and host factors, thereby contributing to the pathological spectrum of human leishmaniasis.


Subject(s)
Interferon Type I/immunology , Leishmania guyanensis , Leishmaniasis, Mucocutaneous/immunology , Leishmaniavirus/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/immunology , Phlebotomus Fever/immunology , Sandfly fever Naples virus/immunology , Animals , Coinfection , Interferon Type I/genetics , Leishmania guyanensis/immunology , Leishmania guyanensis/virology , Leishmaniasis, Mucocutaneous/genetics , Leishmaniasis, Mucocutaneous/pathology , Lymphocytic Choriomeningitis/genetics , Lymphocytic Choriomeningitis/pathology , Mice , Mice, Knockout , Phlebotomus Fever/genetics , Phlebotomus Fever/pathology
9.
PLoS Negl Trop Dis ; 11(1): e0005240, 2017 01.
Article in English | MEDLINE | ID: mdl-28099431

ABSTRACT

Recent studies have shown that a cytoplasmic virus called Leishmaniavirus (LRV) is present in some Leishmania species and acts as a potent innate immunogen, aggravating lesional inflammation and development in mice. In humans, the presence of LRV in Leishmania guyanensis and in L. braziliensis was significantly correlated with poor treatment response and symptomatic relapse. So far, no clinical effort has used LRV for prophylactic purposes. In this context, we designed an original vaccine strategy that targeted LRV nested in Leishmania parasites to prevent virus-related complications. To this end, C57BL/6 mice were immunized with a recombinant LRV1 Leishmania guyanensis viral capsid polypeptide formulated with a T helper 1-polarizing adjuvant. LRV1-vaccinated mice had significant reduction in lesion size and parasite load when subsequently challenged with LRV1+ Leishmania guyanensis parasites. The protection conferred by this immunization could be reproduced in naïve mice via T-cell transfer from vaccinated mice but not by serum transfer. The induction of LRV1 specific T cells secreting IFN-γ was confirmed in vaccinated mice and provided strong evidence that LRV1-specific protection arose via a cell mediated immune response against the LRV1 capsid. Our studies suggest that immunization with LRV1 capsid could be of a preventive benefit in mitigating the elevated pathology associated with LRV1 bearing Leishmania infections and possibly avoiding symptomatic relapses after an initial treatment. This novel anti-endosymbiotic vaccine strategy could be exploited to control other infectious diseases, as similar viral infections are largely prevalent across pathogenic pathogens and could consequently open new vaccine opportunities.


Subject(s)
Capsid Proteins/immunology , Leishmania guyanensis/virology , Leishmaniasis/prevention & control , Leishmaniavirus/immunology , Animals , Capsid Proteins/administration & dosage , Capsid Proteins/genetics , Female , Humans , Immunity, Cellular , Leishmania guyanensis/genetics , Leishmania guyanensis/immunology , Leishmania guyanensis/physiology , Leishmaniasis/immunology , Leishmaniasis/parasitology , Leishmaniavirus/genetics , Leishmaniavirus/physiology , Mice , Mice, Inbred C57BL , Symbiosis , T-Lymphocytes/immunology , Vaccination
10.
PLoS Pathog ; 12(9): e1005852, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27658195

ABSTRACT

Cutaneous leishmaniasis has various outcomes, ranging from self-healing reddened papules to extensive open ulcerations that metastasise to secondary sites and are often resistant to standard therapies. In the case of L. guyanensis (L.g), about 5-10% of all infections result in metastatic complications. We recently showed that a cytoplasmic virus within L.g parasites (LRV1) is able to act as a potent innate immunogen, worsening disease outcome in a murine model. In this study, we investigated the immunophenotype of human patients infected by L.g and found a significant association between the inflammatory cytokine IL-17A, the presence of LRV1 and disease chronicity. Further, IL-17A was inversely correlated to the protective cytokine IFN-γ. These findings were experimentally corroborated in our murine model, where IL-17A produced in LRV1+ L.g infection contributed to parasite virulence and dissemination in the absence of IFN-γ. Additionally, IL-17A inhibition in mice using digoxin or SR1001, showed therapeutic promise in limiting parasite virulence. Thus, this murine model of LRV1-dependent infectious metastasis validated markers of disease chronicity in humans and elucidated the immunologic mechanism for the dissemination of Leishmania parasites to secondary sites. Moreover, it confirms the prognostic value of LRV1 and IL-17A detection to prevent metastatic leishmaniasis in human patients.

11.
Cell Host Microbe ; 20(3): 318-328, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27593513

ABSTRACT

Some strains of the protozoan parasite Leishmania guyanensis (L.g) harbor a viral endosymbiont called Leishmania RNA virus 1 (LRV1). LRV1 recognition by TLR-3 increases parasite burden and lesion swelling in vivo. However, the mechanisms by which anti-viral innate immune responses affect parasitic infection are largely unknown. Upon investigating the mammalian host's response to LRV1, we found that miR-155 was singularly and strongly upregulated in macrophages infected with LRV1+ L.g when compared to LRV1- L.g. LRV1-driven miR-155 expression was dependent on TLR-3/TRIF signaling. Furthermore, LRV1-induced TLR-3 activation promoted parasite persistence by enhancing macrophage survival through Akt activation in a manner partially dependent on miR-155. Pharmacological inhibition of Akt resulted in a decrease in LRV1-mediated macrophage survival and consequently decreased parasite persistence. Consistent with these data, miR-155-deficient mice showed a drastic decrease in LRV1-induced disease severity, and lesional macrophages from these mice displayed reduced levels of Akt phosphorylation.


Subject(s)
Immunity, Innate , Leishmania guyanensis/virology , Leishmaniavirus/immunology , Macrophages/parasitology , MicroRNAs/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Toll-Like Receptor 3/metabolism , Animals , Cell Survival , Disease Models, Animal , Leishmania guyanensis/pathogenicity , Leishmania guyanensis/physiology , Leishmaniasis, Mucocutaneous/parasitology , Leishmaniasis, Mucocutaneous/pathology , Macrophages/immunology , Mice , Mice, Knockout
12.
PLoS One ; 9(5): e96766, 2014.
Article in English | MEDLINE | ID: mdl-24801628

ABSTRACT

Infections with Leishmania parasites of the Leishmania Viannia subgenus give rise to both localized cutaneous (CL), and metastatic leishmaniasis. Metastasizing disease forms including disseminated (DCL) and mutocutaneous (MCL) leishmaniasis result from parasitic dissemination and lesion formation at sites distal to infection and have increased inflammatory responses. The presence of Leishmania RNA virus (LRV) in L. guyanensis parasites contributes to the exacerbation of disease and impacts inflammatory responses via activation of TLR3 by the viral dsRNA. In this study we investigated other innate immune response adaptor protein modulators and demonstrated that both MyD88 and TLR9 played a crucial role in the development of Th1-dependent healing responses against L. guyanensis parasites regardless of their LRV status. The absence of MyD88- or TLR9-dependent signaling pathways resulted in increased Th2 associated cytokines (IL-4 and IL-13), which was correlated with low transcript levels of IL-12p40. The reliance of IL-12 was further confirmed in IL12AB-/- mice, which were completely susceptible to infection. Protection to L. guyanensis infection driven by MyD88- and TLR9-dependent immune responses arises independently to those induced due to high LRV burden within the parasites.


Subject(s)
Immunity, Innate , Leishmania guyanensis/virology , Myeloid Differentiation Factor 88/metabolism , RNA Viruses/physiology , Toll-Like Receptor 9/metabolism , Animals , Disease Susceptibility , Interleukin-12 Subunit p35/deficiency , Interleukin-12 Subunit p35/genetics , Interleukin-12 Subunit p35/metabolism , Interleukin-12 Subunit p40/deficiency , Interleukin-12 Subunit p40/genetics , Interleukin-12 Subunit p40/metabolism , Interleukin-13/metabolism , Interleukin-4/metabolism , Leishmania guyanensis/physiology , Leishmaniasis, Mucocutaneous/immunology , Leishmaniasis, Mucocutaneous/pathology , Leishmaniasis, Mucocutaneous/veterinary , Lymph Nodes/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/deficiency , Myeloid Differentiation Factor 88/genetics , Signal Transduction , Th1 Cells/immunology , Th1 Cells/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism , Toll-Like Receptor 9/deficiency , Toll-Like Receptor 9/genetics
13.
PLoS Negl Trop Dis ; 7(1): e2006, 2013.
Article in English | MEDLINE | ID: mdl-23326619

ABSTRACT

BACKGROUND: Patients suffering from cutaneous leishmaniasis (CL) caused by New World Leishmania (Viannia) species are at high risk of developing mucosal (ML) or disseminated cutaneous leishmaniasis (DCL). After the formation of a primary skin lesion at the site of the bite by a Leishmania-infected sand fly, the infection can disseminate to form secondary lesions. This metastatic phenotype causes significant morbidity and is often associated with a hyper-inflammatory immune response leading to the destruction of nasopharyngeal tissues in ML, and appearance of nodules or numerous ulcerated skin lesions in DCL. Recently, we connected this aggressive phenotype to the presence of Leishmania RNA virus (LRV) in strains of L. guyanensis, showing that LRV is responsible for elevated parasitaemia, destructive hyper-inflammation and an overall exacerbation of the disease. Further studies of this relationship and the distribution of LRVs in other Leishmania strains and species would benefit from improved methods of viral detection and quantitation, especially ones not dependent on prior knowledge of the viral sequence as LRVs show significant evolutionary divergence. METHODOLOGY/PRINCIPAL FINDINGS: This study reports various techniques, among which, the use of an anti-dsRNA monoclonal antibody (J2) stands out for its specific and quantitative recognition of dsRNA in a sequence-independent fashion. Applications of J2 include immunofluorescence, ELISA and dot blot: techniques complementing an arsenal of other detection tools, such as nucleic acid purification and quantitative real-time-PCR. We evaluate each method as well as demonstrate a successful LRV detection by the J2 antibody in several parasite strains, a freshly isolated patient sample and lesion biopsies of infected mice. CONCLUSIONS/SIGNIFICANCE: We propose that refinements of these methods could be transferred to the field for use as a diagnostic tool in detecting the presence of LRV, and potentially assessing the LRV-related risk of complications in cutaneous leishmaniasis.


Subject(s)
Leishmania/virology , RNA Viruses/isolation & purification , RNA, Double-Stranded/isolation & purification , Animals , Antibodies, Monoclonal , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay/methods , Fluorescent Antibody Technique/methods , Humans , Immunoblotting/methods , Mice , Mice, Inbred C57BL , Molecular Sequence Data , RNA, Double-Stranded/immunology , RNA, Viral/genetics , Sequence Analysis, DNA , Virology/methods
14.
Science ; 331(6018): 775-8, 2011 Feb 11.
Article in English | MEDLINE | ID: mdl-21311023

ABSTRACT

Mucocutaneous leishmaniasis is caused by infections with intracellular parasites of the Leishmania Viannia subgenus, including Leishmania guyanensis. The pathology develops after parasite dissemination to nasopharyngeal tissues, where destructive metastatic lesions form with chronic inflammation. Currently, the mechanisms involved in lesion development are poorly understood. Here we show that metastasizing parasites have a high Leishmania RNA virus-1 (LRV1) burden that is recognized by the host Toll-like receptor 3 (TLR3) to induce proinflammatory cytokines and chemokines. Paradoxically, these TLR3-mediated immune responses rendered mice more susceptible to infection, and the animals developed an increased footpad swelling and parasitemia. Thus, LRV1 in the metastasizing parasites subverted the host immune response to Leishmania and promoted parasite persistence.


Subject(s)
Chemokines/metabolism , Cytokines/metabolism , Leishmania guyanensis/pathogenicity , Leishmania guyanensis/virology , Leishmaniasis, Mucocutaneous/immunology , Leishmaniavirus/immunology , Toll-Like Receptor 3/immunology , Animals , Inflammation Mediators/metabolism , Leishmaniasis, Mucocutaneous/parasitology , Leishmaniavirus/physiology , Macrophages/immunology , Macrophages/parasitology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Parasitemia , Phagosomes/parasitology , RNA, Double-Stranded/immunology , RNA, Viral/immunology , Toll-Like Receptors/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...