Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Cancers (Basel) ; 16(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38275901

ABSTRACT

Extensive research is underway to develop new therapeutic strategies to counteract therapy resistance in cancers. This review presents various strategies to achieve this objective. First, we discuss different vectorization platforms capable of releasing drugs in cancer cells. Second, we delve into multitarget therapies using drug combinations and dual anticancer agents. This section will describe examples of multitarget therapies that have been used to treat solid tumors.

2.
ChemMedChem ; 16(6): 1034-1046, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33275308

ABSTRACT

Signal transducers and activators of transcription 5A and 5B (STAT5A and STAT5B) are two closely related STAT family members that are crucial downstream effectors of tyrosine kinase oncoproteins such as FLT3-ITD in acute myeloid leukemia (AML) and BCR-ABL in chronic myeloid leukemia (CML). We recently developed and reported the synthesis of a first molecule called 17 f that selectively inhibits STAT5 signaling in myeloid leukemia cells and overcomes their resistance to chemotherapeutic agents. To improve the antileukemic effect of 17 f, we synthesized ten analogs of this molecule and analyzed their impact on cell growth, survival, chemoresistance and STAT5 signaling. Two compounds, 7 a and 7 a', were identified as having similar or higher antileukemic effects in various AML and CML cell lines. Both molecules were found to be more effective than 17 f at inhibiting STAT5 activity/expression and suppressing the chemoresistance of CML.


Subject(s)
Antineoplastic Agents/pharmacology , Leukemia, Myeloid/drug therapy , Quinolines/pharmacology , STAT5 Transcription Factor/antagonists & inhibitors , Tumor Suppressor Proteins/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Leukemia, Myeloid/metabolism , Leukemia, Myeloid/pathology , Molecular Structure , Quinolines/chemical synthesis , Quinolines/chemistry , STAT5 Transcription Factor/metabolism , Signal Transduction/drug effects , Structure-Activity Relationship , Tumor Suppressor Proteins/metabolism
3.
Int J Mol Sci ; 21(15)2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32751795

ABSTRACT

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) involvement has been established in the oncogenic cell signaling of acute myeloid leukemia (AML) cells and in the crosstalk with their niche. We have shown an expression of NOX subunits in AML cell lines while NOX activity is lacking in the absence of exogenous stimulation. Here, we used AML cell lines as models to investigate the specificity of VAS3947, a current NOX inhibitor. Results demonstrated that VAS3947 induces apoptosis in AML cells independently of its anti-NOX activity. High-performance liquid chromatography (HPLC) and mass spectrometry analyses revealed that VAS3947 thiol alkylates cysteine residues of glutathione (GSH), while also interacting with proteins. Remarkably, VAS3947 decreased detectable GSH in the MV-4-11 cell line, thereby suggesting possible oxidative stress induction. However, a decrease in both cytoplasmic and mitochondrial reactive oxygen species (ROS) levels was observed by flow cytometry without disturbance of mitochondrial mass and membrane potential. Thus, assuming the consequences of VAS3947 treatment on protein structure, we examined its impact on endoplasmic reticulum (ER) stress. An acute unfolded protein response (UPR) was triggered shortly after VAS3947 exposure, through the activation of inositol-requiring enzyme 1α (IRE1α) and PKR-like endoplasmic reticulum kinase (PERK) pathways. Overall, VAS3947 induces apoptosis independently of anti-NOX activity, via UPR activation, mainly due to aggregation and misfolding of proteins.


Subject(s)
Apoptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Leukemia, Myeloid, Acute/drug therapy , Oxidative Stress/drug effects , Pyrimidines/pharmacology , Triazoles/pharmacology , Unfolded Protein Response/drug effects , Cell Line, Tumor , Endoplasmic Reticulum/metabolism , Humans , Mitochondria/metabolism , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism
4.
Cancers (Basel) ; 12(1)2020 Jan 18.
Article in English | MEDLINE | ID: mdl-31963765

ABSTRACT

Signal Transducer and Activator of Transcription (STAT) 3 and 5 are important effectors of cellular transformation, and aberrant STAT3 and STAT5 signaling have been demonstrated in hematopoietic cancers. STAT3 and STAT5 are common targets for different tyrosine kinase oncogenes (TKOs). In addition, STAT3 and STAT5 proteins were shown to contain activating mutations in some rare but aggressive leukemias/lymphomas. Both proteins also contribute to drug resistance in hematopoietic malignancies and are now well recognized as major targets in cancer treatment. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations during the last decade. This review summarizes the current knowledge of oncogenic STAT3 and STAT5 functions in hematopoietic cancers as well as advances in preclinical and clinical development of pharmacological inhibitors.

5.
Cancers (Basel) ; 11(12)2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31861239

ABSTRACT

Signal transducers and activators of transcription 5A and 5B (STAT5A and STAT5B) are crucial downstream effectors of tyrosine kinase oncogenes (TKO) such as BCR-ABL in chronic myeloid leukemia (CML) and FLT3-ITD in acute myeloid leukemia (AML). Both proteins have been shown to promote the resistance of CML cells to tyrosine kinase inhibitors (TKI) such as imatinib mesylate (IM). We recently synthesized and discovered a new inhibitor (17f) with promising antileukemic activity. 17f selectively inhibits STAT5 signaling in CML and AML cells by interfering with the phosphorylation and transcriptional activity of these proteins. In this study, the effects of 17f were evaluated on CML and AML cell lines that respectively acquired resistance to IM and cytarabine (Ara-C), a conventional therapeutic agent used in AML treatment. We showed that 17f strongly inhibits the growth and survival of resistant CML and AML cells when associated with IM or Ara-C. We also obtained evidence that 17f inhibits STAT5B but not STAT5A protein expression in resistant CML and AML cells. Furthermore, we demonstrated that 17f also targets oncogenic STAT5B N642H mutant in transformed hematopoietic cells.

6.
J Med Chem ; 60(14): 6119-6136, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28654259

ABSTRACT

Signal transducers and activators of transcription 5 (STAT5s) are crucial effectors of tyrosine kinase oncogenes in myeloid leukemias. Inhibition of STAT5 would contribute to reducing the survival of leukemic cells and also tackling their chemoresistance. In a first screening experiment, we identified hit 13 as able to inhibit STAT5 phosphorylation and leukemic cell growth. The synthesis of 18 analogues of 13 allowed us to identify one compound, 17f, as having the most potent antileukemic effect. 17f inhibited the growth of acute and chronic myeloid leukemia cells and the phosphorylation and transcriptional activity of STAT5. Importantly, 17f had minimal effects on bone marrow stromal cells that play vital functions in the microenvironment of hematopoietic and leukemic cells. We also demonstrated that 17f inhibits STAT5 but not STAT3, AKT, or Erk1/2 phosphorylation. These results suggest that 17f might be a new lead molecule targeting STAT5 signaling in myeloid leukemias.


Subject(s)
Antineoplastic Agents/chemistry , Indoles/chemistry , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myeloid, Acute/drug therapy , Quinolines/chemistry , STAT5 Transcription Factor/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , Indoles/chemical synthesis , Indoles/pharmacology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Quinolines/chemical synthesis , Quinolines/pharmacology , Signal Transduction , Structure-Activity Relationship
7.
Eur J Med Chem ; 108: 701-719, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26741853

ABSTRACT

From four molecules, inspired by the structural features of fascaplysin, with an interesting potential to inhibit cyclin-dependent kinases (CDKs), we designed a new series of tri-heterocyclic derivatives based on 1H-pyrrolo[2,3-b]pyridine (7-azaindole) and triazole heterocycles. Using a Huisgen type [3 + 2] cycloaddition as the convergent key step, 24 derivatives were synthesized and their biological activities were evaluated. Comparative molecular field analysis (CoMFA), based on three-dimensional quantitative structure-activity relationship (3D-QSAR) studies, was conducted on a series of 30 compounds from the literature with high to low known inhibitory activity towards CDK2/cyclin E and was validated by a test set of 5 compounds giving satisfactory predictive r(2) value of 0.92. Remarkably, it also gave a good prediction of pIC50 for our tri-heterocyclic series which reinforce the validation of this model for the pIC50 prediction of external set compounds. The most promising compound, 43, showed a micro-molar range inhibitory activity against CDK2/cyclin E and also an antiproliferative and proapoptotic activity against a panel of cancer cell lines.


Subject(s)
Antineoplastic Agents/pharmacology , Cyclin E/antagonists & inhibitors , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Heterocyclic Compounds/pharmacology , Indoles/pharmacology , Models, Molecular , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin E/metabolism , Cyclin-Dependent Kinase 2/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/chemistry , Humans , Indoles/chemical synthesis , Indoles/chemistry , Molecular Structure , Quantitative Structure-Activity Relationship
9.
J Org Chem ; 80(6): 3264-9, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-25689109

ABSTRACT

7-Azaindoles are versatile building blocks, especially in medicinal chemistry, where they serve as bioisosteres of indoles or purines. Herein, we present a novel rhodium-catalyzed asymmetric 1,4-addition of arylboronic acids to 3-benzylidene-1H-pyrrolo[2,3-b]pyridin-2(3H)-ones, as these substrates are exocyclic methylene lactamyl Michael acceptors. Ten new original derivatives of 1H-pyrrolo[2,3-b]pyridin-2(3H)-one have been obtained.

10.
Yeast ; 31(7): 243-51, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24700391

ABSTRACT

Candida guilliermondii (teleomorph Meyerozyma guilliermondii) is an ascomycetous species belonging to the fungal CTG clade. This yeast remains actively studied as a result of its moderate clinical importance and most of all for its potential uses in biotechnology. The aim of the present study was to establish a convenient transformation system for C. guilliermondii by developing both a methionine auxotroph recipient strain and a functional MET gene as selection marker. We first disrupted the MET2 and MET15 genes encoding homoserine-O-acetyltransferase and O-acetylserine O-acetylhomoserine sulphydrylase, respectively. The met2 mutant was shown to be a methionine auxotroph in contrast to met15 which was not. Interestingly, met2 and met15 mutants formed brown colonies when cultured on lead-containing medium, contrary to the wild-type strain, which develop as white colonies on this medium. The MET2 wild-type allele was successfully used to transfer a yellow fluorescent protein (YFP) gene-expressing vector into the met2 recipient strain. In addition, we showed that the loss of the MET2-containing YFP-expressing plasmid can be easily observed on lead-containing medium. The MET2 wild-type allele, flanked by two short repeated sequences, was then used to disrupt the LYS2 gene (encoding the α-aminoadipate reductase) in the C. guilliermondii met2 recipient strain. The resulting lys2 mutants displayed, as expected, auxotrophy for lysine. Unfortunately, all our attempts to pop-out the MET2 marker (following the recombination of the bordering repeat sequences) from a target lys2 locus were unsuccessful using white/brown colony colour screening. Nevertheless, this MET2 transformation/disruption system represents a new versatile genetic tool for C. guilliermondii.


Subject(s)
Candida/metabolism , Methionine/biosynthesis , Acetyltransferases/genetics , Acetyltransferases/metabolism , Biosynthetic Pathways/genetics , Candida/enzymology , Candida/genetics , Cloning, Molecular , Cysteine Synthase/genetics , Cysteine Synthase/metabolism , Genetic Markers/genetics , Genetic Markers/physiology , Luminescent Proteins/genetics , Methionine/genetics , Microscopy, Fluorescence , Mutagenesis, Insertional , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...