Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Front Robot AI ; 10: 1202306, 2023.
Article in English | MEDLINE | ID: mdl-38106544

ABSTRACT

This paper summarizes the structure and findings from the first Workshop on Troubles and Failures in Conversations between Humans and Robots. The workshop was organized to bring together a small, interdisciplinary group of researchers working on miscommunication from two complementary perspectives. One group of technology-oriented researchers was made up of roboticists, Human-Robot Interaction (HRI) researchers and dialogue system experts. The second group involved experts from conversation analysis, cognitive science, and linguistics. Uniting both groups of researchers is the belief that communication failures between humans and machines need to be taken seriously and that a systematic analysis of such failures may open fruitful avenues in research beyond current practices to improve such systems, including both speech-centric and multimodal interfaces. This workshop represents a starting point for this endeavour. The aim of the workshop was threefold: Firstly, to establish an interdisciplinary network of researchers that share a common interest in investigating communicative failures with a particular view towards robotic speech interfaces; secondly, to gain a partial overview of the "failure landscape" as experienced by roboticists and HRI researchers; and thirdly, to determine the potential for creating a robotic benchmark scenario for testing future speech interfaces with respect to the identified failures. The present article summarizes both the "failure landscape" surveyed during the workshop as well as the outcomes of the attempt to define a benchmark scenario.

2.
J Med Internet Res ; 25: e43502, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36848183

ABSTRACT

BACKGROUND: Encouraging office workers to break up prolonged sedentary behavior (SB) at work with regular microbreaks can be beneficial yet challenging. The Internet of Things (IoT) offers great promise for delivering more subtle and hence acceptable behavior change interventions in the workplace. We previously developed an IoT-enabled SB intervention, called WorkMyWay, by applying a combination of theory-informed and human-centered design approaches. According to the Medical Research Council's framework for developing and evaluating complex interventions such as WorkMyWay, process evaluation in the feasibility phase can help establish the viability of novel modes of delivery and identify facilitators and barriers to successful delivery. OBJECTIVE: This study aims to evaluate the feasibility and acceptability of the WorkMyWay intervention and its technological delivery system. METHODS: A mixed methods approach was adopted. A sample of 15 office workers were recruited to use WorkMyWay during work hours for 6 weeks. Questionnaires were administered before and after the intervention period to assess self-report occupational sitting and physical activity (OSPA) and psychosocial variables theoretically aligned with prolonged occupational SB (eg, intention, perceived behavioral control, prospective memory and retrospective memory of breaks, and automaticity of regular break behaviors). Behavioral and interactional data were obtained through the system database to determine adherence, quality of delivery, compliance, and objective OSPA. Semistructured interviews were conducted at the end of the study, and a thematic analysis was performed on interview transcripts. RESULTS: All 15 participants completed the study (attrition=0%) and on average used the system for 25 tracking days (out of a possible 30 days; adherence=83%). Although no significant change was observed in either objective or self-report OSPA, postintervention improvements were significant in the automaticity of regular break behaviors (t14=2.606; P=.02), retrospective memory of breaks (t14=7.926; P<.001), and prospective memory of breaks (t14=-2.661; P=.02). The qualitative analysis identified 6 themes, which lent support to the high acceptability of WorkMyWay, though delivery was compromised by issues concerning Bluetooth connectivity and factors related to user behaviors. Fixing technical issues, tailoring to individual differences, soliciting organizational supports, and harnessing interpersonal influences could facilitate delivery and enhance acceptance. CONCLUSIONS: It is acceptable and feasible to deliver an SB intervention with an IoT system that involves a wearable activity tracking device, an app, and a digitally augmented everyday object (eg, cup). More industrial design and technological development work on WorkMyWay is warranted to improve delivery. Future research should seek to establish the broad acceptability of similar IoT-enabled interventions while expanding the range of digitally augmented objects as the modes of delivery to meet diverse needs.


Subject(s)
Biomedical Research , Internet of Things , Humans , Sedentary Behavior , Feasibility Studies , Retrospective Studies
3.
JMIR Mhealth Uhealth ; 8(7): e17914, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32723716

ABSTRACT

BACKGROUND: Sedentary behavior (SB) is associated with various adverse health outcomes. The prevalence of prolonged sitting at work among office workers makes a case for SB interventions to target this setting and population. Everyday mundane objects with embedded microelectronics and ubiquitous computing represent a novel mode of delivering health behavior change interventions enabled by internet of things (IoTs). However, little is known about how to develop interventions involving IoT technologies. OBJECTIVE: This paper reports the design and development of an IoT-enabled SB intervention targeting office workers. METHODS: The process was guided by the behavior change wheel (BCW), a systematic framework for theory-informed and evidence-based development of behavior change interventions, complemented by the human-centered design (HCD) approach. Intervention design was shaped by findings from a diary-probed interview study (n=20), a stakeholder design workshop (n=8), and a series of theoretical mapping and collaborative technical design activities. RESULTS: The resulting intervention named WorkMyWay targets a reduction in office workers' prolonged stationary behaviors at work and an increase in regular breaks by modifying behavioral determinants in 11 theoretical domains with 17 behavior change techniques. The delivery technology consists of a wearable activity tracker, a light-emitting diode reminder device attached to a vessel (ie, water bottle or cup), and a companion Android app connected to both devices over Bluetooth. The delivery plan consists of a 2-week baseline assessment, a 30-min face-to-face action planning session, and 6-week self-directed use of the delivery technology. CONCLUSIONS: This is the first study to demonstrate that it is possible to develop a complex IoT-enabled intervention by applying a combination of the BCW and HCD approaches. The next step is to assess the feasibility of WorkMyWay prior to testing intervention efficacy in a full-scale trial. The intervention mapping table that links individual intervention components with hypothesized mechanisms of action can serve as the basis for testing and clarifying theory-based mechanisms of action in future studies on WorkMyWay.


Subject(s)
Internet of Things , Occupational Health , Sedentary Behavior , Female , Fitness Trackers , Humans , Male , Workplace
SELECTION OF CITATIONS
SEARCH DETAIL