Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Clin Cancer Res ; 29(18): 3573-3578, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37265412

ABSTRACT

On September 21, 2022, the FDA granted accelerated approval to selpercatinib (Retevmo, Eli Lilly and Company) for the treatment of adult patients with locally advanced or metastatic solid tumors with a rearranged during transfection (RET) gene fusion that have progressed on or following prior systemic treatment or who have no satisfactory alternative treatment options. The approval was based on data from Study LOXO-RET-17001 (LIBRETTO-001; NCT03157128), an international, non-randomized, multi-cohort clinical trial that included patients with advanced solid tumors harboring RET alterations. The overall response rate in 41 patients with locally advanced or metastatic RET fusion-positive solid tumors other than non-small cell lung cancer (NSCLC) or thyroid cancer was 44% [95% confidence interval (CI), 28%-60%], with median duration of response 24.5 months (95% CI, 9.2-not evaluable). Patients with 10 of 14 tumor types with a variety of fusion partners had objective responses, including patients with the following tumors: pancreatic adenocarcinoma, colorectal, salivary, unknown primary, breast, soft-tissue sarcoma, bronchial carcinoid, ovarian, small intestine, and cholangiocarcinoma. The recommendation for approval was supported by results from LIBRETTO-001 in patients with RET fusion-positive NSCLC and thyroid cancer, which formed the basis of prior approvals in these tumor types. The most common adverse reactions (>25%) were edema, diarrhea, fatigue, dry mouth, hypertension, abdominal pain, constipation, rash, nausea, and headache. This is the first tissue-agnostic approval of a RET-directed targeted therapy.


Subject(s)
Adenocarcinoma , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Pancreatic Neoplasms , Thyroid Neoplasms , Adult , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Adenocarcinoma/pathology , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Proto-Oncogene Proteins c-ret/genetics
2.
Oncologist ; 27(2): 149-157, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35641211

ABSTRACT

On December 18, 2020, US Food and Drug Administration (FDA) approved a supplemental application for ponatinib extending the indication in patients with chronic-phase chronic myeloid leukemia (CP-CML) to patients with resistance or intolerance of at least 2 prior kinase inhibitors. Ponatinib was initially approved in December 2012 but was briefly voluntarily withdrawn due to serious safety concerns including the risk of arterial occlusive events (AOE). It returned to the market in December 2013 with an indication limited to patients with T315I mutation or for whom no other tyrosine kinase inhibitor (TKI) therapy was indicated with revised warnings and precautions. A post-marketing requirement was issued to identify the optimal safe and effective dose for CP-CML. Thus, the OPTIC trial was performed, which randomized patients to 1 of 3 doses, 45 mg, 30 mg, or 15 mg, with a dose reduction to 15 mg on achievement of MR2 (BCR-ABLIS ≤1%). Patients enrolled were treated with at least 2 prior TKIs or had a T315I mutation. Patients with a history of clinically significant, uncontrolled, or active cardiovascular disease were excluded. Efficacy was established on an interim analysis based on the rate of MR2 at 12 months in the modified intent-to-treat population of 261 patients, with 88, 86, and 87 patients in the 45, 30, and 15 mg cohorts, respectively. With a median follow-up of 28 months, the rate of achievement of MR2 at 12 months was 42%, 28%, and 24% in the respective cohorts. The safety profile was consistent with that observed in prior evaluations of ponatinib with notable adverse reactions including pancreatitis, hypertension, hyperlipidemia, liver dysfunction, and AOE. Of patients treated at the 45/15 mg dose, AOEs were seen in 13%, with a higher rate being observed in patients age 65 or older compared to younger patients. A readjudication of AOEs seen on the prior pivotal phase 2 study resulted in a rate of 26%. Overall, the results supported a modification of the recommended dose for patients with CP-CML to 45 mg until the achievement of MR2 followed by a reduction to 15 mg. The expansion of the indication to patients with exposure to 2 prior TKIs was approved given data showing that ponatinib could be successfully used for the treatment of this population with appropriate monitoring and screening for risk factors.


Subject(s)
Antineoplastic Agents , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Aged , Antineoplastic Agents/adverse effects , Drug Resistance, Neoplasm/genetics , Fusion Proteins, bcr-abl/genetics , Humans , Imidazoles , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Protein Kinase Inhibitors/adverse effects , Pyridazines , United States , United States Food and Drug Administration
3.
Ther Adv Med Oncol ; 13: 17588359211053700, 2021.
Article in English | MEDLINE | ID: mdl-34733359

ABSTRACT

BACKGROUND: Minibeam radiation therapy is an experimental radiation therapy utilizing an array of parallel submillimeter planar X-ray beams. In preclinical studies, minibeam radiation therapy has been shown to eradicate tumors and cause significantly less damage to normal tissue compared to equivalent radiation doses delivered by conventional broadbeam radiation therapy, where radiation dose is uniformly distributed. METHODS: Expanding on prior studies that suggested minibeam radiation therapy increased perfusion in tumors, we compared a single fraction of minibeam radiation therapy (peak dose:valley dose of 28 Gy:2.1 Gy and 100 Gy:7.5 Gy) and broadbeam radiation therapy (7 Gy) in their ability to enhance tumor delivery of PEGylated liposomal doxorubicin and alter the tumor microenvironment in a murine tumor model. Plasma and tumor pharmacokinetic studies of PEGylated liposomal doxorubicin and tumor microenvironment profiling were performed in a genetically engineered mouse model of claudin-low triple-negative breast cancer (T11). RESULTS: Minibeam radiation therapy (28 Gy) and broadbeam radiation therapy (7 Gy) increased PEGylated liposomal doxorubicin tumor delivery by 7.1-fold and 2.7-fold, respectively, compared to PEGylated liposomal doxorubicin alone, without altering the plasma disposition. The enhanced tumor delivery of PEGylated liposomal doxorubicin by minibeam radiation therapy is consistent after repeated dosing, is associated with changes in tumor macrophages but not collagen or angiogenesis, and nontoxic to local tissues. Our study indicated that the minibeam radiation therapy's ability to enhance the drug delivery decreases from 28 to 100 Gy peak dose. DISCUSSION: Our studies suggest that low-dose minibeam radiation therapy is a safe and effective method to significantly enhance the tumor delivery of nanoparticle agents.

4.
Oncologist ; 26(10): 879-886, 2021 10.
Article in English | MEDLINE | ID: mdl-34132444

ABSTRACT

In June 2020, the U.S. Food and Drug Administration granted accelerated approval to selinexor for the treatment of adult patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL), not otherwise specified, including DLBCL arising from follicular lymphoma, after at least two lines of systemic therapy. Approval was based on SADAL, a multicenter trial of selinexor monotherapy in patients with DLBCL after two to five systemic regimens. Efficacy was based on independent review committee-assessed objective response rate (ORR) and duration of response using Lugano criteria. In 134 patients treated with the approved dosage (60 mg orally on days 1 and 3 of each week), the ORR was 29% (95% confidence interval, 22-38), with complete response in 13% and with 38% of responses lasting at least 6 months. Gastrointestinal toxicity developed in 80% of patients, hyponatremia in 61%, central neurological toxicity (such as dizziness and mental status changes) in 25%, and ocular toxicity in 18%. New or worsening grade 3 or 4 thrombocytopenia, lymphopenia, neutropenia, anemia, or hyponatremia developed in ≥15%. Adverse reactions led to selinexor dose interruption in 61% of patients, dose reduction in 49%, and permanent discontinuation in 17%, with thrombocytopenia being the leading cause of dose modifications. Postmarketing studies will evaluate reduced dosages of selinexor and further evaluate clinical benefit in patients with relapsed or refractory DLBCL. IMPLICATIONS FOR PRACTICE: Selinexor is a new potential option for adults with relapsed or refractory diffuse large B-cell lymphoma, not otherwise specified, in the third-line setting or beyond. Toxicities are typically manageable but can be difficult to tolerate and necessitate close monitoring and supportive care.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Neutropenia , Humans , Hydrazines , Lymphoma, Large B-Cell, Diffuse/drug therapy , Multicenter Studies as Topic , Treatment Outcome , Triazoles
6.
Clin Cancer Res ; 27(8): 2130-2135, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33239432

ABSTRACT

On May 8, 2020, the FDA granted accelerated approval to selpercatinib for (i) adult patients with metastatic RET fusion-positive non-small cell lung cancer (NSCLC), (ii) adult and pediatric patients ≥12 years of age with advanced or metastatic RET-mutant medullary thyroid cancer who require systemic therapy, and (iii) adult and pediatric patients ≥12 years of age with advanced or metastatic RET fusion-positive thyroid cancer who require systemic therapy and who are radioactive iodine refractory (if radioactive iodine is appropriate). Approval was granted on the basis of the clinically important effects on the overall response rate (ORR) with prolonged duration of responses observed in a multicenter, open-label, multicohort clinical trial (LIBRETTO-001, NCT03157128) in patients whose tumors had RET alterations. ORRs within the approved patient populations ranged from 64% [95% confidence interval (CI), 54-73] in prior platinum-treated RET fusion-positive NSCLC to 100% (95% CI, 63-100) in systemic therapy-naïve RET fusion-positive thyroid cancer, with the majority of responders across indications demonstrating responses of at least 6 months. The product label includes warnings and precautions for hepatotoxicity, hypertension, QT interval prolongation, hemorrhagic events, hypersensitivity, risk of impaired wound healing, and embryo-fetal toxicity. This is the first approval of a drug specifically for patients with RET alterations globally.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/administration & dosage , Pyrazoles/administration & dosage , Pyridines/administration & dosage , Thyroid Neoplasms/drug therapy , Adult , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Child , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Drug Approval , Humans , Lung Neoplasms/genetics , Multicenter Studies as Topic , Mutation , Oncogene Proteins, Fusion/genetics , Protein Kinase Inhibitors/adverse effects , Proto-Oncogene Proteins c-ret/antagonists & inhibitors , Proto-Oncogene Proteins c-ret/genetics , Pyrazoles/adverse effects , Pyridines/adverse effects , Thyroid Neoplasms/genetics , Treatment Outcome , United States , United States Food and Drug Administration
7.
Sci Adv ; 6(29): eaay9249, 2020 07.
Article in English | MEDLINE | ID: mdl-32832614

ABSTRACT

Nanoparticle (NP) delivery to solid tumors has recently been questioned. To better understand the magnitude of NP tumor delivery, we reanalyzed published murine NP tumor pharmacokinetic (PK) data used in the Wilhelm et al. study. Studies included in their analysis reporting matched tumor and blood concentration versus time data were evaluated using classical PK endpoints and compared to the unestablished percent injected dose (%ID) in tumor metric from the Wilhelm et al. study. The %ID in tumor was poorly correlated with standard PK metrics that describe NP tumor delivery (AUCtumor/AUCblood ratio) and only moderately associated with maximal tumor concentration. The relative tumor delivery of NPs was ~100-fold greater as assessed by the standard AUCtumor/AUCblood ratio than by %ID in tumor. These results strongly suggest that PK metrics and calculations can influence the interpretation of NP tumor delivery and stress the need to properly validate novel PK metrics against traditional approaches.

8.
J Control Release ; 311-312: 138-146, 2019 10.
Article in English | MEDLINE | ID: mdl-31454530

ABSTRACT

Antibodies that specifically bind polyethylene glycol (PEG), i.e. anti-PEG antibodies (APA), are associated with reduced efficacy and increased risk of serious adverse events for several PEGylated therapeutics. Here, we explored the concept of using free PEG molecules to saturate circulating APA. Surprisingly, we found that 40 kDa free PEG effectively restored the prolonged circulation of PEGylated liposomes in the presence of high titers of pre-existing APA for at least 48 h in mice. In contrast, lower molecular weight free PEG (≤10 kDa) failed to restore circulation beyond a few hours. These in vivo results were consistent with estimates from a minimal physiologically based pharmacokinetic model. Importantly, the infusion of free PEG appeared to be safe in mice previously sensitized by injection of PEGylated liposomes, and free PEG did not elicit excess APA production even in mice with pre-existing adaptive immunity against PEG. Our results support further investigation of high molecular weight free PEG as a potential method to control and overcome high titers of APA, restoring the prolonged circulation of PEGylated liposomes and possibly other PEGylated therapeutics.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Antibodies/immunology , Doxorubicin/administration & dosage , Polyethylene Glycols/administration & dosage , Administration, Intravenous , Animals , Antibiotics, Antineoplastic/pharmacokinetics , Doxorubicin/pharmacokinetics , Female , Liposomes , Liver/metabolism , Mice, Inbred BALB C , Molecular Weight , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics
9.
Antibodies (Basel) ; 7(1)2018 Feb 07.
Article in English | MEDLINE | ID: mdl-31544862

ABSTRACT

Major advances in therapeutic proteins, including antibody-drug conjugates (ADCs), have created revolutionary drug delivery systems in cancer over the past decade. While these immunoconjugate agents provide several advantages compared to their small-molecule counterparts, their clinical use is still in its infancy. The considerations in their development and clinical use are complex, and consist of multiple components and variables that can affect the pharmacologic characteristics. It is critical to understand the mechanisms employed by ADCs in navigating biological barriers and how these factors affect their biodistribution, delivery to tumors, efficacy, and toxicity. Thus, future studies are warranted to better understand the complex pharmacology and interaction between ADC carriers and biological systems, such as the mononuclear phagocyte system (MPS) and tumor microenvironment. This review provides an overview of factors that affect the pharmacologic profiles of ADC therapies that are currently in clinical use and development.

10.
Biochem Pharmacol ; 123: 85-96, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27836670

ABSTRACT

Bupropion is a widely used antidepressant and smoking cessation aid and a strong inhibitor of CYP2D6 in vivo. Bupropion is administered as a racemic mixture of R- and S-bupropion and has stereoselective pharmacokinetics. Four primary metabolites of bupropion, threo- and erythro-hydrobupropion and R,R- and S,S-OH-bupropion, circulate at higher concentrations than the parent drug and are believed to contribute to the efficacy and side effects of bupropion as well as to the CYP2D6 inhibition. However, bupropion and its metabolites are only weak inhibitors of CYP2D6 in vitro, and the magnitude of the in vivo drug-drug interactions (DDI) caused by bupropion cannot be explained by the in vitro data even when CYP2D6 inhibition by the metabolites is accounted for. The aim of this study was to quantitatively explain the in vivo CYP2D6 DDI magnitude by in vitro DDI data. Bupropion and its metabolites were found to inhibit CYP2D6 stereoselectively with up to 10-fold difference in inhibition potency between enantiomers. However, the reversible inhibition or active uptake into hepatocytes did not explain the in vivo DDIs. In HepG2 cells and in plated human hepatocytes bupropion and its metabolites were found to significantly downregulate CYP2D6 mRNA in a concentration dependent manner. The in vivo DDI was quantitatively predicted by significant down-regulation of CYP2D6 mRNA and reversible inhibition of CYP2D6 by bupropion and its metabolites. This study is the first example of a clinical DDI resulting from CYP down-regulation and first demonstration of a CYP2D6 interaction resulting from transcriptional regulation.


Subject(s)
Bupropion/pharmacology , Cytochrome P-450 CYP2D6/metabolism , Bupropion/metabolism , Chromatography, Liquid , Down-Regulation , Drug Interactions , Hep G2 Cells , Humans , In Vitro Techniques , Smoking Cessation , Tandem Mass Spectrometry
11.
Drug Metab Dispos ; 44(10): 1709-19, 2016 10.
Article in English | MEDLINE | ID: mdl-27495292

ABSTRACT

Bupropion is a widely used antidepressant, smoking cessation aid, and weight-loss therapy. It is administered as a racemic mixture, but the pharmacokinetics and activity of bupropion are stereoselective. The activity and side effects of bupropion are attributed to bupropion and its metabolites S,S- and R,R-OH-bupropion, threohydrobupropion, and erythrohydrobupropion. Yet the stereoselective metabolism in vitro and the enzymes contributing to the stereoselective disposition of bupropion have not been characterized. In humans, the fraction of bupropion metabolized (fm) to the CYP2B6 probe metabolite OH-bupropion is 5-16%, but ticlopidine increases bupropion exposure by 61%, suggesting a 40% CYP2B6 and/or CYP2C19 fm for bupropion. Yet, the CYP2C19 contribution to bupropion clearance has not been defined, and the enzymes contributing to overall bupropion metabolite formation have not been fully characterized. The aim of this study was to characterize the stereoselective metabolism of bupropion in vitro to explain the stereoselective pharmacokinetics and the effect of drug-drug interactions (DDIs) and CYP2C19 pharmacogenetics on bupropion exposure. The data predict that threohydrobupropion accounts for 50 and 82%, OH-bupropion for 34 and 12%, erythrohydrobupropion for 8 and 4%, and 4'-OH-bupropion for 8 and 2% of overall R- and S-bupropion clearance, respectively. The fm,CYP2B6 was predicted to be 21%, and the fm,CYP2C19, 6% for racemic bupropion. Importantly, ticlopidine was found to inhibit all metabolic pathways of bupropion in vitro, including threohydrobupropion, erythrohydrobupropion, and 4'OH-bupropion formation, explaining the in vivo DDI. The stereoselective pharmacokinetics of bupropion were quantitatively explained by the in vitro metabolic clearances and in vivo interconversion between bupropion stereoisomers.


Subject(s)
Antidepressive Agents, Second-Generation/pharmacokinetics , Bupropion/analogs & derivatives , Bupropion/pharmacokinetics , Humans , In Vitro Techniques , Stereoisomerism
12.
PLoS One ; 9(3): e90124, 2014.
Article in English | MEDLINE | ID: mdl-24595070

ABSTRACT

Bacteria associated with mammals are a rich source of microbial biodiversity; however, little is known concerning the abilities of these microbes to generate secondary metabolites. This report focuses on a bacterium isolated from the ear of a feral hog from southwestern Oklahoma, USA. The bacterium was identified as a new strain (PE36) of Brevibacillus latersporus, which was shown via genomic analysis to contain a large number of gene clusters presumably involved in secondary metabolite biosynthesis. A scale-up culture of B. latersporus PE36 yielded three bioactive compounds that inhibited the growth of methicillin-resistant Staphylococcus aureus (basiliskamides A and B and 12-methyltetradecanoic acid). Further studies of the isolate's secondary metabolome provided both new (auripyrazine) and previously-described pyrazine-containing compounds. In addition, a new peptidic natural product (auriporcine) was purified that was determined to be composed of a polyketide unit, two L-proline residues, two D-leucine residues, one L-leucine residue, and a reduced L-phenylalanine (L-phenylalanol). An examination of the genome revealed two gene clusters that are likely responsible for generating the basiliskamides and auriporcine. These combined genomic and chemical studies confirm that new and unusual secondary metabolites can be obtained from the bacterial associates of wild mammals.


Subject(s)
Animals, Wild/microbiology , Biological Products/metabolism , Brevibacillus/metabolism , Genome , Metabolomics , Swine/microbiology , Animals , Brevibacillus/classification , Brevibacillus/genetics , Genes, Bacterial , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...