Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Oper Dent ; 49(2): 136-156, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38349819

ABSTRACT

OBJECTIVES: To evaluate the effect of the different radiant exposures from a multipeak light curing unit on the physical and mechanical properties of flowable and high-viscosity bulk-fill resin-based composites (RBC). METHODS: Five flowable bulk-fill RBCs (Tetric N-Flow Bulk-fill, Ivoclar Vivadent; Filtek Bulk Fill Flow, 3M Oral Care; Opus Bulk Fill Flow APS, FGM; Admira Fusion x-base, Voco and; and SDR Plus Bulk Fill Flowable, Dentsply Sirona) and five high-viscosity bulk-fill RBCs (Tetric N-Ceram Bulk-fill, Ivoclar Vivadent; Filtek One Bulk Fill, 3M Oral Care; Opus Bulk Fill APS, FGM; Admira Fusion x-tra, Voco; and SonicFill 2, Kerr) were photo-cured using a VALO Cordless light (Ultradent) for 10, 20, and 40 seconds at an irradiance of 1200, 800, or 400 mW/cm2, resulting in the delivery of 4, 8, 12, 16, 24, 32, or 48 J/cm2. Post-gel shrinkage (Shr) was calculated using strain-gauge test. The degree of conversion (DC, %) was calculated using FTIR. Knoop hardness (KH, N/mm2) and elastic modulus (E, MPa) were measured at the top and bottom surfaces. Logarithmic regressions between the radiant exposures and mechanical properties were calculated. Radiodensity was calculated using digital radiographs. Data of Shr and radiodensity were analyzed using two-way analysis of variance (ANOVA), and the DC, KH, and E data were analyzed with two-way ANOVA using split-plot repeated measurement tests followed by the Tukey test (a = 0.05). RESULTS: Delivering higher radiant exposures produced higher Shr values (p<0.001) and higher DC values (R2=0.808-0.922; R2=0.648-0.914, p<0.001), KH (R2=0.707-0.952; R2=0.738-0.919; p<0.001), and E (R2=0.501-0.925; R2=0.823-0.919; p<0.001) values for the flowable and high-viscosity RBCs respectively. Lower KH, E and Shr were observed for the flowable bulk-fill RBCs. All bulk-fill RBCs had a radiopacity level greater than the 4-mm thick aluminum step wedge. The radiant exposure did not affect the radiopacity. CONCLUSION: The Shr, DC, KH, and E values were highly correlated to the radiant exposure delivered to the RBCs. The combination of the higher irradiance for longer exposure time that resulted in radiant exposure between 24 J/cm2 to 48 J/cm2 produced better results than delivering 400 mW/cm2 for 40 s (16 J/cm2), and 800 mW/cm2 for 20 seconds (16 J/cm2) or 1200 mW/cm2 for 10 seconds (12 J/cm2). All the bulk-fill RBCs were sufficiently radiopaque compared to 4 mm of aluminum.


Subject(s)
Acrylic Resins , Aluminum , Composite Resins , Methacrylates , Polyurethanes , Siloxanes , Viscosity , Materials Testing , Polymerization , Dental Materials , Surface Properties
2.
Oper Dent ; 48(3): 304-316, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36917633

ABSTRACT

OBJECTIVES: To analyze the effect of using the resin-based composite manufacturer's recommended exposure time on the degree of conversion (DC), Knoop hardness (KH), and elastic modulus (E) of conventional and bulk-fill resin-based composites (RBCs). METHODS: Three resin-based composites (RBCs) were tested: Tetric EvoCeram Bulk Fill (TET), Opus Bulk Fill APS (OPU), and RBC Vittra APS (VIT). They were photo-activated in 2 mm deep, 6 mm diameter molds for their recommended exposure times of 10 seconds, 20 seconds, or 40 seconds from four light-curing units (LCUs). Two delivered a single emission peak in the blue light region (Optilight Max and Radii-Cal) and two delivered multiple emission peaks in the violet and blue region (VALO Cordless and Bluephase G2). After 24 hours of dry storage at 37°C in the dark, the KH (Kgf/mm2), E (MPa) and DC (%) at the top and bottom surfaces of specimens (n=5) were measured and the results analyzed by 2-way analysis of variance (ANOVA) followed by a Tukey test (α=0.05). RESULTS: The irradiance (mW/cm2) and spectral irradiance (mW/cm2/nm) from the LCUs were reduced significantly (8-35%) after passing through 2.0 mm of RBC (p<0.001). The DC at the bottom of VIT and TET was less than at the top surface (p<0.001). OPU had the same DC at the top and bottom surface (p=0.341). The KH and E values at the top surface of VIT and TET were substantially higher than at the bottom (p<0.001). OPU exposed for 40 seconds achieved higher mechanical properties than TET that was photo-activated for 10 seconds (p<0.001). The opacity of different bulk-fill RBCs changed differently during the polymerization; OPU became more opaque, whereas TET became more transparent. When exposed for their recommended times, the 2 mm thick RBCs that used Ivocerin or the APS photoinitiator system were adequately photo-activated using either the single or multiple emission peak LCUs (p=0.341). CONCLUSION: After 24 hours' storage, all the 2 mm thick RBCs photo-cured in 6 mm diameter molds achieved a bottom-to-top hardness ratio of at least 80% when their recommended exposure times were used. TET, when photo-activated for 10 seconds, achieved lower mechanical properties than OPU that had been photo-activated for 40 seconds. The change in opacity of the RBCs was different during photo-activation.


Subject(s)
Curing Lights, Dental , Light-Curing of Dental Adhesives , Light-Curing of Dental Adhesives/methods , Materials Testing , Dental Materials , Composite Resins , Hardness , Polymerization , Surface Properties
3.
Oper Dent ; 48(2): 226-235, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36786761

ABSTRACT

OBJECTIVES: This study evaluated the influence of the thickness of disilicate ceramic on the light attenuation (mW/cm2), degree of conversion (DC, %), Knoop hardness (KH, N/mm2) and the elastic modulus (E, MPa) of four luting resins. METHODS: Three resin cements: RelyX Veneer (RV, 3M Oral Care, Monrovia, CA USA); Allcem Veneer APS (AC, FGM); Variolink Esthetic LC (VE, Ivoclar Vivadent, Schaan, Liechtenstein) and one flowable resin composite Tetric N-Flow (TF, Ivoclar Vivadent) were photocured for 20 seconds. The irradiance (mW/cm2) and emission spectrum (mW/cm2/nm) from a broad-spectrum LED light unit (Bluephase G2, Ivoclar Vivadent) were measured over the luting material (control) and through 0.3 mm, 0.7 mm, and 1.0 mm thick ceramic discs (e.max CAD, Ivoclar Vivadent). RESULTS: The LED light delivered 26.1 J/cm2 to the surface and 6.2 J/cm2 through the 1.0 mm thick ceramic. The distribution of violet and blue light across the light tip of the light-curing unit (LCU) was relatively homogeneous, but there was less violet range. The irradiance and spectral radiant power decreased significantly as the ceramic thicknesses increased (p<0.001). The luting material type had significant effect on KH and E values (p<0.001). The RV had the greatest KH and E values, and VE had the lowest. Ceramic thickness had no significant effect on KH (p=0.213) and E (p=0.130). The KH (p=0.265) and E (p=0.165) were also not influenced by the location where these measurements were made across the specimens. No significant reduction of the DC was observed as the ceramic thickness increased (p=0.311). CONCLUSION: Increasing the ceramic thickness exponentially reduced the irradiance. This reduction was more pronounced at the shorter wavelengths (violet) of light, with an 82% decrease for 1 mm-thick ceramic. Increasing the ceramic thickness did not affect the DC, irrespective of photoinitiators used in the tested resins. The position of the violet and blue LEDs within the body of the LCU did not influence KH or E in any of the resins tested. The KH and E of VE were significantly lower than the other 3 luting materials tested.


Subject(s)
Composite Resins , Dental Porcelain , Elastic Modulus , Hardness , Ceramics , Resin Cements , Materials Testing , Surface Properties
4.
Oper Dent ; 47(2): 163-172, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35604828

ABSTRACT

OBJECTIVE: To evaluate the effect of the sample preparation and light-curing units (LCUs) on the Knoop hardness (KH, N/mm2) and degree of conversion (DC, %) of bulk-fill resin-based composite restorations. METHODS: Two molds were made using human molar teeth embedded in acrylic resin. One was a conventional tooth mold where the molar received a mesio-occluso-distal (MOD) preparation. In the other, the tooth was sectioned in three slices (buccal, middle, and lingual). The center slice received a MOD preparation similar to the conventional mold. Both tooth molds were placed in the second mandibular molar position in a Dentoform with a 44-mm interincisal opening. Restorations were made using Opus Bulk Fill (FGM) high viscosity bulk-fill resin-based composite (RBC) and light cured using two different lights: VALO Cordless (Ultradent) and Bluephase G2 (Ivoclar Vivadent). The RBC was placed in one increment that was light-cured for a total of 80 seconds (40 seconds at the occluso-mesial and occluso-distal locations). The RBC specimens were then prepared as follows: EmbPol - tooth mold specimen was embedded in polystyrene resin and polished before testing; Pol - tooth mold specimen was not embedded, but was polished before testing; NotPol - sectioned tooth mold, specimen not embedded nor polished before testing. The KH was measured in different depths and regions of the specimens, and the DC was measured using Raman spectroscopy. RESULTS: The results were analyzed using a 2-way analysis of variance (ANOVA) or repeated measures followed by the Tukey post-hoc test (α=0.05). The preparation method (p<0.001), depth of restoration (p<0.001), and the interaction between method and depth (p=0.003) all influenced the KH values. Preparation method (p<0.001), tooth region (p<0.001), and the interaction between method and tooth region (p=0.002) all influenced DC values. The KH values were reduced significantly from the top to the bottom of the restorations and also at the proximal box when compared with the occlusal region. This outcome was most significant in the proximal boxes. The NotPol method was the most effective method to detect the effect of differences in KH or DC within the restoration. A lower DC and KH were found at the gingival regions of the proximal boxes of the restorations. When the KH and DC values were compared, there were no significant differences between the LCUs (KH p=0.4 and DC p=0.317). CONCLUSION: Preparation methods that embedded the samples in polystyrene resin and polished the specimens reduced the differences between the KH and DC values obtained by different preparation techniques. The NotPol method was better able to detect differences produced by light activation in deeper areas.


Subject(s)
Curing Lights, Dental , Light-Curing of Dental Adhesives , Composite Resins/chemistry , Dental Materials/chemistry , Hardness , Humans , Materials Testing , Polymerization , Polystyrenes
5.
Oper Dent ; 46(3): 283-292, 2021 May 01.
Article in English | MEDLINE | ID: mdl-34437704

ABSTRACT

OBJECTIVES: To correlate the radiant power (mW), radiant exitance (or tip irradiance in mW/cm2), emission spectrum (mW/cm2/nm), and beam irradiance profile of 12 light-curing units (LCUs) available in the Brazilian market with their market cost. METHODS AND MATERIALS: Six LCUs that cost more than US$900 (Bluephase G4,VALO Grand, VALO Cordless, Radii Xpert, Elipar DeepCure-S, and Radii plus) and six low-cost LCUs costing less than US$500 (Radii Cal, Optilight Max, High Power LED 3M, Emitter D, Emitter C, and LED B) were examined. Radiant power (mW) and emission spectrum (mW/nm) were measured using an integrating sphere connected to a fiber-optic spectroradiometer. The internal tip diameter (mm) of each LCU was measured using a digital caliper and was used to calculate the average radiant exitance (mW/cm2). Irradiance profiles at the light tip were measured using a commercial laser beam profiler. The cost of each LCU in Brazil was correlated with internal tip diameter, radiant power, and tip irradiance. RESULTS: None of the low-cost LCUs were broad spectrum multiple peak LCUs. There was no correlation between the cost of the LCUs and their averaged tip irradiance; however, there was a high positive correlation between the cost of the LCUs and the radiant power and tip diameter. The VALO Grand, Elipar DeepCure-S, VALO Cordless, and Bluephase G4 all emitted a higher radiant power. They also had a significantly greater tip diameter than other LCUs. For the LCUs with a nonuniform output, some areas of the light tip delivered less than 400 mW/cm2, while other areas delivered more than 2500 mW/cm2. CONCLUSIONS: In general, LCUs that had a higher cost (US$971-US$1800) delivered more power (mW) and had a greater tip diameter (mm), which covered more of a tooth. In general, the low-cost LCUs (US$224-US$470) emitted a lower radiant power and had a smaller tip diameter.


Subject(s)
Curing Lights, Dental , Tooth , Brazil , Composite Resins , Light-Curing of Dental Adhesives , Materials Testing
6.
Oper Dent ; 46(3): 327-338, 2021 May 01.
Article in English | MEDLINE | ID: mdl-34143219

ABSTRACT

OBJECTIVE: To measure and compare the effect of operator experience in their ability to place composite in increments that are 2 mm thick. METHODS AND MATERIALS: Fifteen volunteers from each class of freshmen, sophomores, juniors, and senior dental students and 15 clinical faculty (total number of volunteers = 75) were asked to restore a Class I preparation that was 5 mm in diameter and 8 mm deep from the cusp tips using three increments of composite that were each to be 2 mm thick. Once completed, the models were sectioned, and the thickness of each increment was measured. A repeated-measures analysis of variance (pre-set α=0.05) was used to compare the mean increment thickness with respect to operator experience level and increment sequence number. In addition, the proportion of operators placing clinically acceptable increments (between 1.75 and 2.25 mm thick), as well as the proportions from each group who placed increments that either were thinner or thicker than this range, was determined using nonparametric analyses. RESULTS: Overall, there was an increasing trend for groups with a higher experience level to provide mean incremental thickness values close to 2 mm. However, the likelihood of placing an increment that was thicker or thinner than the manufacturer-recommended thickness was not significantly different. Regardless of the increment value, only about one-third of the increments placed fell within the desired range of 1.75 to 2.25 mm. CONCLUSIONS: Operator experience had no overwhelming significant influence on the ability to place increments of composite that were between 1.75 and 2.25 mm thick. An operator has only about one chance out of three to place a composite increment within this clinically acceptable range when using no external measurement system.


Subject(s)
Composite Resins , Dental Restoration, Permanent , Humans
7.
Oper Dent ; 45(3): E141-E155, 2020.
Article in English | MEDLINE | ID: mdl-32053458

ABSTRACT

OBJECTIVES: This study examined the influence of different light-curing units (LCUs) and exposure times on the microhardness across bulk-fill resin-based composite (RBC) restorations in a molar tooth. METHODS AND MATERIALS: Tip diameter, radiant power, radiant exitance, emission spectra, and light beam profile were measured on two single-emission-peak LCUs (Celalux 3 and DeepCure-S) and two multiple-peak LCUs (Bluephase 20i and Valo Grand). A mold was made using a human molar that had a 12-mm mesial-distal length, a 2.5-mm deep occlusal box, and two 4.5-mm deep proximal boxes. Two bulk-fill RBCs (Filtek Bulk Fill Posterior and Tetric EvoCeram Bulk Fill) were photoactivated for 10 seconds and for 20 seconds, with the light guide positioned at the center of the occlusal surface. Microhardness was then measured across the transverse surface of the restorations. The light that reached the bottom of the proximal boxes was examined. Data were statistically analyzed with the Student t-test, two-way analysis of variance, and the Tukey post hoc test (α=0.05). RESULTS: The four LCUs were different regarding all the tested characteristics. Even when using LCUs with wide tips and a homogeneous beam profile, there were significant differences in the microhardness results obtained at the central and proximal regions of the RBCs (p<0.05). LCUs with wider tips used for 20 seconds produced higher microhardness values (p<0.05). The multiple-peak LCUs produced greater hardness values in Tetric EvoCeram Bulk Fill than did the single-emission-peak LCUs (Celalux 3 and DeepCure-S). Results for the light measured at the bottom of proximal boxes showed that little light reached these regions when the light tip was positioned at the center of restorations. CONCLUSIONS: Curing lights with wide tips, homogeneous light beam profiles, and longer exposure times are preferred when light-curing large MOD restorations. Light curing from more than one position may be required for adequate photopolymerization.


Subject(s)
Curing Lights, Dental , Light-Curing of Dental Adhesives , Composite Resins , Dental Materials , Hardness , Humans , Materials Testing , Molar , Polymerization , Surface Properties
8.
Appl Opt ; 58(35): 9540-9547, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31873552

ABSTRACT

Two-dimensional (2D) beam profiling is an emerging technique used to characterize the beam homogeneity in dental light-curing units (LCUs). This project developed a method to combine multiple 2D beam profiles that had been measured along the beam path to create a 3D profile of the beam. This allowed a quantitative investigation of beam divergence and homogeneity at different distances from the source. To illustrate the use of this technique, four representative dental LCUs were measured. In addition, the selected dental LCUs demonstrated the effects of LCU design, particularly that of fiber optic light guides, on beam quality. The results show the value of a program that can recombine multiple beam profile images made at different distances from the source to create a 3D beam profile of a light beam.

9.
Oper Dent ; 44(6): 637-647, 2019.
Article in English | MEDLINE | ID: mdl-30702404

ABSTRACT

OBJECTIVES: This study evaluated the effect of toothbrushing with a dentifrice on gloss, roughness profile, surface roughness, and wear of conventional and bulk-fill resin-based composites. METHODS AND MATERIALS: Gloss and surface roughness of resin-based composites (RBCs; Admira Fusion X-tra, Aura Bulk Fill, Filtek Bulk Fill Flowable, Filtek Bulk Fill Posterior Restorative, Filtek Supreme Ultra, Herculite Ultra, Mosaic Enamel, SDR flow+, Sonic Fill 2, Tetric EvoFlow Bulk Fill and Tetric EvoCeram Bulk Fill) were analyzed before and after brushing; the roughness profile and wear were also determined after toothbrushing. Representative three-dimensional images of the surface loss and images comparing the unbrushed and brushed surfaces were also compared. Analysis of variance and Tukey post hoc tests were applied (α=0.05) to the gloss, surface roughness, roughness profile, and surface loss data. Pearson's correlation test was used to determine the correlation between gloss and surface roughness, surface loss and percentage of gloss decrease after brushing, and surface loss and surface roughness after brushing. RESULTS: For all RBCs tested after 20,000 brushing cycles, the gloss was reduced and the surface roughness increased (p<0.05). However, the roughness profile and the amount of surface loss were dependent on the RBC brand. Admira Fusion X-tra, Aura, Tetric EvoCeram Bulk Fill, and Tetric EvoFlow Bulk Fill showed the deepest areas of wear (p<0.05). A significant negative correlation was found between gloss and surface roughness, and a weak correlation was found between the decrease in gloss and the extent of surface loss, and any increase in surface roughness and the surface loss. CONCLUSIONS: Toothbrushing with a dentifrice reduced the gloss, increased the surface roughness, and caused loss at the surface of all the RBCs tested. Considering all the properties tested, Mosaic Enamel exhibited excellent gloss retention and a low roughness profile and wear, while Admira Fusion X-tra exhibited the greatest decrease in gloss, the highest roughness profile, and the most wear.


Subject(s)
Dentifrices , Toothbrushing , Composite Resins , Dental Materials , Materials Testing , Surface Properties
10.
Oper Dent ; 44(1): 96-107, 2019.
Article in English | MEDLINE | ID: mdl-29953339

ABSTRACT

OBJECTIVES:: This study compared light transmission through different thicknesses of bulk-fill resin-based composites (RBCs) using a polywave and a single-peak light-emitting diode light-curing unit (LCU). The effect on the surface hardness was also evaluated. METHODS:: Five bulk-fill RBCs were tested. Specimens (n=5) of 1-, 2-, 4-, or 6-mm thickness were photopolymerized for 10 seconds from the top using a polywave (Bluephase Style) or single-peak (Elipar S10) LCU, while a spectrophotometer monitored in real time the transmitted irradiance and radiant exposure reaching the bottom of the specimen. After 24 hours of storage in distilled water at 37°C, the Vickers microhardness (VH) was measured at top and bottom. Results were analyzed using multiple-way analysis of variance, Tukey post hoc tests, and multivariate analysis (α=0.05). RESULTS:: The choice of LCU had no significant effect on the total amount of light transmitted through the five bulk-fill RBCs at each thickness. There was a significant decrease in the amount of light transmitted as the thickness increased for all RBCs tested with both LCUs ( p<0.001). Effect of LCU on VH was minimal (ηp2=0.010). The 1-, 2-, and 4-mm-thick specimens of SDR, X-tra Fill, and Filtek Bulk Restorative achieved a VHbottom/top ratio of approximately 80% when either LCU was used. CONCLUSIONS:: The total amount of light transmitted through the five bulk-fill RBCs was similar at the different thicknesses using either LCU. The polywave LCU used in this study did not enhance the polymerization of the tested bulk-fill RBCs when compared with the single-peak LCU.


Subject(s)
Composite Resins/chemistry , Curing Lights, Dental , Light-Curing of Dental Adhesives/methods , Dental Materials/chemistry , Hardness Tests , Materials Testing , Methacrylates , Polymerization , Surface Properties
11.
Oper Dent ; 44(3): 289-301, 2019.
Article in English | MEDLINE | ID: mdl-30444687

ABSTRACT

OBJECTIVES: To evaluate the effect of light curing bulk fill resin composite restorations on the increase in the temperature of the pulp chamber both with and without a simulated pulpal fluid flow. METHODS AND MATERIALS: Forty extracted human molars received a flat occlusal cavity, leaving approximately 2 mm of dentin over the pulp. The teeth were restored using a self-etch adhesive system (Clearfil SE Bond, Kuraray) and two different bulk fill resin composites: a flowable (SDR, Dentsply) and a regular paste (AURA, SDI) bulk fill. The adhesive was light cured for 20 seconds, SDR was light cured for 20 seconds, and AURA was light cured for 40 seconds using the Bluephase G2 (Ivoclar Vivadent) or the VALO Cordless (Ultradent) in the standard output power mode. The degree of conversion (DC) at the top and bottom of the bulk fill resin composite was assessed using Fourier-Transform Infra Red spectroscopy. The temperature in the pulp chamber when light curing the adhesive system and resin composite was measured using a J-type thermocouple both with and without the presence of a simulated microcirculation of 1.0-1.4 mL/min. Data were analyzed using Student t-tests and two-way and three-way analyses of variance (α=0.05 significance level). RESULTS: The irradiance delivered by the light-curing units (LCUs) was greatest close to the top sensor of the MARC resin calibrator (BlueLight Analytics) and lowest after passing through the 4.0 mm of resin composite plus 2.0 mm of dentin. In general, the Bluephase G2 delivered a higher irradiance than did the VALO Cordless. The resin composite, LCU, and region all influenced the degree of cure. The simulated pulpal microcirculation significantly reduced the temperature increase. The greatest temperature rise occurred when the adhesive system was light cured. The Bluephase G2 produced a rise of 6°C, and the VALO Cordless produced a lower temperature change (4°C) when light curing the adhesive system for 20 seconds without pulpal microcirculation. Light curing SDR produced the greatest exothermic reaction. CONCLUSIONS: Using simulated pulpal microcirculation resulted in lower temperature increases. The flowable composite (SDR) allowed more light transmission and had a higher degree of conversion than did the regular paste (AURA). The greatest temperature rise occurred when light curing the adhesive system alone.


Subject(s)
Composite Resins , Curing Lights, Dental , Dentin , Humans , Materials Testing , Microcirculation , Temperature
12.
Oper Dent ; 43(4): 398-407, 2018.
Article in English | MEDLINE | ID: mdl-29630482

ABSTRACT

OBJECTIVES: This study evaluated the light output from six light-emitting diode dental curing lights after 25 consecutive light exposures without recharging the battery, tip accessibility in the posterior region, and light beam spread from light-curing units. METHODS: Irradiance, spectral peak, and radiant exposure were measured with the battery fully charged (Bluephase Style, ESPE Cordless, Elipar S10, Demi Ultra, Valo Cordless, and Radii-Cal) and monitored for 25 light exposures (each lasting 10 seconds). The tip diameter was measured to identify the beam size and the ability of the six light-curing units to irradiate all areas of the lower second molar in the standard output setting. RESULTS: Four curing lights delivered a single peak wavelength from 454 to 462 nm, and two (Bluephase Style and Valo Cordless) delivered multiple emission peaks (at 410 and 458 nm and 400, 450, and 460 nm, respectively). The irradiance and radiant exposure always decreased after 25 exposures by 2% to 8%, depending on the light unit; however, only ESPE Cordless, Valo Cordless, and Radii-Cal presented a statistical difference between the first and the last exposure. The tip diameter ranged from 6.77 mm to 9.40 mm. The Radii-Cal delivered the lowest radiant exposure and irradiance. This light was also unable to access all the teeth with the tip parallel to the occlusal surface of the tooth. CONCLUSION: Not all of the blue-emitting lights deliver the same emission spectra, and some curing lights delivered a lower irradiance (as much as 8% lower) after the 25th exposure.


Subject(s)
Curing Lights, Dental , Electric Power Supplies , Equipment Design , Materials Testing
13.
Oper Dent ; 43(5): 520-529, 2018.
Article in English | MEDLINE | ID: mdl-29570024

ABSTRACT

OBJECTIVE: To evaluate the effects of different mold materials, their diameters, and light-curing units on the mechanical properties of three resin-based composites (RBC). METHODS AND MATERIALS: A conventional nano-filled resin composite (Filtek Supreme Ultra, 3M Oral Care, St Paul, MN, USA) and two bulk-fill composites materials, Tetric Evoceram Bulk fill (Ivoclar Vivadent, Schaan, Liechtenstein) and Aura Bulk Fill (SDI, Bayswater, VIC, Australia), were tested. A total of 240 specimens were fabricated using metal or white semitransparent Delrin molds that were 4 or 10 mm in diameter. The RBCs were light cured for 40 seconds on the high-power setting of either a monowave (DeepCure-S, 3M Oral Care) or polywave (Bluephase G2, Ivoclar Vivadent) light-emitting diode (LED) curing unit. The depth of cure was determined using a scraping test, according to the 2009 ISO 4049 test method. Data were analyzed using multivariate analysis of variance followed by Tukey multiple comparison test ( p<0.05). RESULTS: In general, when used for 40 seconds, both LED curing lights achieved the same depth of cure ( p=0.157). However, the mold material and its diameter had a significant effect on the depth of cure of all three RBCs ( p<0.0001). CONCLUSION: Curing with either the polywave or monowave LED curing light resulted in the same depth of cure in the composites. The greatest depth of cure was always achieved using the 10-mm-diameter Delrin mold. Of the three RBCs tested, both Tetric Bulk Fill and Aura achieved a 4-mm depth of cure when tested in the 10-mm-diameter metal mold. Tetric Bulk Fill was the most transparent and had the greatest depth of cure, and the conventional composite had the least depth of cure. Very little violet (<420 nm) light penetrated through 6 mm of any of the RBCs.


Subject(s)
Composite Resins/therapeutic use , Light-Curing of Dental Adhesives , Curing Lights, Dental , Dental Restoration, Permanent/methods , Hardness , Humans , In Vitro Techniques
15.
Oper Dent ; 42(5): 537-547, 2017.
Article in English | MEDLINE | ID: mdl-28581917

ABSTRACT

PURPOSE: This study examined the influence of different emission spectra (single-peak and broad-spectrum) light-curing units (LCUs) delivering the same radiant exposures at irradiance values of 1200 or 3600 mW/cm2 on the polymerization and light transmission of four resin-based composites (RBCs). METHODS AND MATERIALS: Two prototype LCUs that used the same light tip, but were either a single-peak blue or a broad-spectrum LED, were used to deliver the same radiant exposures to the top surfaces of the RBCs using either standard (1200 mW/cm2) or high irradiance (3600 mW/cm2) settings. The emission spectrum and radiant power from the LCUs were measured with a laboratory-grade integrating sphere coupled to a spectrometer, and the light beam was assessed with a beam profiler camera. Four RBCs (Filtek Supreme Ultra A2, Tetric EvoCeram A2, Tetric EvoCeram T, and TPH Spectra High Viscosity A2) were photoactivated using four different light conditions: single-peak blue/standard irradiance, single-peak blue/high irradiance, broad-spectrum/standard irradiance, and broad-spectrum/high irradiance. The degree of conversion (N=5) and microhardness at the top and bottom of 2.3-mm-diameter by 2.5-mm-thick specimens (N=5) were analyzed with analysis of variance and Tukey tests. The real-time light transmission through the RBCs was also measured. RESULTS: For all light conditions, the 2.3-mm-diameter specimens received a homogeneous irradiance and spectral distribution. Although similar radiant exposures were delivered to the top surfaces of the RBCs, the amount of light energy emitted from the bottom surfaces was different among the four RBCs, and was also greater for the single-peak lights. Very little violet light (wavelengths below 420 nm) reached the bottom of the 2.5-mm-thick specimens. The degree of conversion and microhardness results varied according to the RBC (p<0.05). The RBCs that included alternative photoinitiators had greater microhardness values at the top when cured with broad-spectrum lights, while at the bottom, where little violet light was observed, the results were equal or higher when they were photoactivated with single-peak blue lights. With the exception of the microhardness at the top of TPH, equivalent or higher microhardness and degree-of-conversion values were achieved at the bottom surface when the standard (1200 mW/cm2) irradiance levels were used compared to when high irradiance levels were used. CONCLUSIONS: Considering the different behaviors of the tested RBCs, the emission spectrum and irradiance level influenced the polymerization of some RBCs. The RBCs that included alternative photoinitiators produced greater values at the top when cured with broad-spectrum lights, while at the bottom, results were equal or higher for the RBCs photoactivated with single-peak blue lights.


Subject(s)
Composite Resins/radiation effects , Light-Curing of Dental Adhesives/methods , Composite Resins/therapeutic use , Curing Lights, Dental , Humans , Polymerization/radiation effects
16.
Br Dent J ; 221(9): 551-554, 2016 Nov 04.
Article in English | MEDLINE | ID: mdl-27811902

ABSTRACT

This paper is the second in a two-part series on the topic of LED light-curing units (LCUs). This part discusses LCU selection, cross infection and decontamination, maintenance, the blue-light hazard, and some possible future developments for LCUs. The article focusses on the practical aspects of the subject from the clinician's perspective. Scientific aspects are dealt with in the cited literature.


Subject(s)
Composite Resins , Curing Lights, Dental , Guidelines as Topic , Humans , Maintenance
17.
Br Dent J ; 221(8): 453-460, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27767163

ABSTRACT

Light curing is a critical step in the restorative process when using light-activated resin-based composites, but it is frequently not given the attention it deserves. The selection of a reliable light curing unit (LCU) that meets the practitioner's needs is an important equipment purchase. Using an inappropriate LCU may seriously compromise the quality of care without the practitioner realising their mistake until years later. The importance of the subject is reflected by the rapidly increasing use of light-cured composites and the decline in the use of amalgam. Many changes have occurred in the equipment and materials available for making light-cured restorations in the last twenty years. This article is part of a two-part series that will describe those changes and recommend guidelines for the selection, use, and maintenance of light emitting diode light-curing units (LED LCUs). This paper (Part 1) discusses terminology, clinical studies, the development of LCUs in dentistry, the aims of light-curing, and the need to deliver an adequate amount of energy. The interaction between light source and material is briefly described to demonstrate the complex nature of the resin photopolymerisation process.


Subject(s)
Curing Lights, Dental , Dental Materials , Maintenance , Composite Resins , Humans
18.
J Dent ; 53: 44-50, 2016 10.
Article in English | MEDLINE | ID: mdl-27373167

ABSTRACT

OBJECTIVES: This study measured the transmission of light in the 'violet' (350≤λ≤425nm) and 'blue' (425<λ≤550nm) spectral ranges from a polywave(®) LED curing light through different thicknesses of four commercial, resin-based composites (RBCs). MATERIAL AND METHODS: Samples of conventional layered RBCs (Tetric EvoCeram A2, Filtek Supreme Ultra A2B), and bulk-curing resins (Tetric EvoCeram Bulk Fill IVA, and SureFil SDR Flow U) were prepared. Three samples of each RBC were made at thicknesses of 0.1, 0.7, 1, 2, and 4-mm. The uncured RBC specimens were affixed at the entrance aperture of a 6-inch integrating sphere and light-cured once for 20s using a polywave(®) LED curing light (Bluephase G2) on its high power setting. The spectral radiant power transmitted through each RBC in the 'violet' and 'blue' regions was measured using a fiberoptic spectrometer. RESULTS: As RBC thickness increased, an exponential attenuation of transmitted light was measured (R(2)>0.98). Attenuation was greater for the 'violet' than for the 'blue' spectral regions. At the light tip, the violet light component represented 15.4% of the light output. After passing through 4-mm of RBC, the violet light represented only between 1.2-3.1% of the transmitted light depending on the RBC. Depending on RBC, approximately 100mW from the Bluephase G2 was transmitted through 0.1-mm of RBC in the 'violet' range, falling at most to 11mW after passing through 2-mm of RBC, and to only 2mW at 4-mm depth. CONCLUSIONS: Increasing RBC thickness results in an exponential decrease in light transmission. This attenuation is RBC-dependent with shorter wavelengths (violet) attenuated to a greater extent than longer wavelengths (blue). CLINICAL RELEVANCE: Despite the increased translucency of bulk curing RBCs, spectral radiant power shorter than 425nm from a curing light is unlikely to be effective at a depth of 4-mm or more.


Subject(s)
Dental Materials , Color , Composite Resins , Curing Lights, Dental , Light , Light-Curing of Dental Adhesives , Materials Testing
19.
Dent Mater ; 32(8): 1026-35, 2016 08.
Article in English | MEDLINE | ID: mdl-27316433

ABSTRACT

OBJECTIVE: To investigate the time evolution of the two dimensional axial shrinkage field for two dental resins in the bonded disk geometry and further test the bonded-disk method. METHODS: An interferometric technique employing a camera was used to image the 2D axial shrinkage field when polymerizing dental resins in real time both during and after light exposure. Four different beam profiles from two light curing units and three sample geometries were utilized to investigate their roles on the 2D axial shrinkage field. RESULTS: The 2D axial shrinkage field correlates qualitatively with the beam profile shortly after the start of light exposure but takes on distinct shapes caused by the rigidity of the coverslip, beam profile, and the resin viscoelasticity. SIGNIFICANCE: Using the conventional bonded disk geometry and uniform beam profile from a light curing unit, the axial 2D shrinkage field was uniform to within 4% in the central part of bonded disk samples.


Subject(s)
Composite Resins , Curing Lights, Dental , Dental Stress Analysis , Kinetics , Materials Testing , Resins, Synthetic , Viscosity
20.
J Dent ; 44: 20-6, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26546716

ABSTRACT

OBJECTIVES: For improved inter-study reproducibility and ultimately improved patient care, researchers and dentists need to know what electromagnetic radiation (light) is emitted from the light-curing unit (LCU) they are using and what is received by the resin. This information cannot be obtained from a dental radiometer, even though many studies have used a dental radiometer. METHODS: The light outputs from six LCUs (two QTH and four broad-spectrum LED units) were collected in real-time using an integrating sphere connected to a fiberoptic spectrometer during different light exposures. RESULTS: It was found that the spectral emissions were unique to each LCU, and there was no standardization in what was emitted on the various ramp (soft-start) settings. Relative to the normal use setting, using the ramp setting reduced the radiant energy (J) delivered from each LCU. For one of the four broad-spectrum LED LCUs, the spectral emissions in the violet range did not increase when the overall radiant power output was increased. In addition, this broad-spectrum LED LCU emitted no light from the violet LED chip for the first 5s and only emitted violet light when the ramp phase finished. CONCLUSIONS: A single irradiance value derived from a dental radiometer or from a laboratory grade power meter cannot adequately describe the output from the LCU. Manufacturers should provide more information about the light output from their LCUs. Ideally, future assessments and research publications that include resin photopolymerization should report the spectral radiant power delivered from the LCU throughout the entire exposure cycle.


Subject(s)
Curing Lights, Dental , Composite Resins/chemistry , Dental Materials , Electromagnetic Radiation , Light , Materials Testing , Photometry/methods , Radiation Dosage , Radiometry/instrumentation , Radiometry/methods , Reproducibility of Results , Semiconductors , Technology, Dental/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...