Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 14(1): 4164, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38378919

ABSTRACT

Microbial diversity of caves is largely understudied and its possible applications are still unknown. Autochthonous fungi, in particular, may have the potential to biomineralize metals and may be used as promising agents for bioremediation of polluted sites; thus, unearthing the fungal diversity in hypogean ecosystems is nowadays of utmost importance. To start addressing this knowledge gap, the cultivable mycobiota of two neighbouring caves-one natural and one exploited for touristic purposes-were characterised and compared by studying fungi isolated from sediments collected at increasing distances from the entrance. Overall, 250 fungal isolates ascribable to 69 taxa (mainly Ascomycota) were found, a high percentage of which was reported in caves for the first time. The sediments of the touristic cave displayed a richer and more diversified community in comparison with the natural one, possibly due to visitors carrying propagules or organic material. Considering that these environments are still poorly explored, chances to detect new fungal lineages are not negligible.


Subject(s)
Ascomycota , Ecosystem , Ascomycota/genetics , Italy , Phylogeny
2.
Fungal Syst Evol ; 1: 141-167, 2018 Jun.
Article in English | MEDLINE | ID: mdl-32490365

ABSTRACT

Covering 70 % of Earth, oceans are at the same time the most common and the environment least studied by microbiologists. Considering the large gaps in our knowledge on the presence of marine fungi in the oceans, the aim of this research was to isolate and identify the culturable fungal community within three species of sponges, namely Dysidea fragilis, Pachymatisma johnstonia and Sycon ciliatum, collected in the Atlantic Ocean and never studied for their associated mycobiota. Applying different isolation methods, incubation temperatures and media, and attempting to mimic the marine and sponge environments, were fundamental to increase the number of cultivable taxa. Fungi were identified using a polyphasic approach, by means of morpho-physiological, molecular and phylogenetic techniques. The sponges revealed an astonishing fungal diversity represented by 87 fungal taxa. Each sponge hosted a specific fungal community with more than half of the associated fungi being exclusive of each invertebrate. Several species isolated and identified in this work, already known in terrestrial environment, were first reported in marine ecosystems (21 species) and in association with sponges (49 species), including the two new species Thelebolus balaustiformis and Thelebolus spongiae, demonstrating that oceans are an untapped source of biodiversity.

3.
Folia Microbiol (Praha) ; 53(1): 44-52, 2008.
Article in English | MEDLINE | ID: mdl-18481217

ABSTRACT

Trametes pubescens and Pleurotus ostreatus, immobilized on polyurethane foam cubes in bioreactors, were used to decolorize three industrial and model dyes at concentrations of 200, 1000 and 2000 ppm. Five sequential cycles were run for each dye and fungus. The activity of laccase, Mn-dependent and independent peroxidases, lignin peroxidase, and aryl-alcohol oxidase were daily monitored during the cycles and the toxicity of media containing 1000 and 2000 ppm of each dye was assessed by the Lemna minor (duckweed) ecotoxicity test. Both fungi were able to efficiently decolorize all dyes even at the highest concentration, and the duckweed test showed a significant reduction (p < or = 0.05) of the toxicity after the decolorization treatment. T. pubescens enzyme activities varied greatly and no clear correlation between decolorization and enzyme activity was observed, while P. ostreatus showed constantly a high laccase activity during decolorization cycles. T. pubescens showed better decolorization and detoxication capability (compared to the better known P. ostreatus). As wide differences in enzyme activity of the individual strains were observed, the strong decolorization obtained with the two fungi suggested that different dye decolorization mechanisms might be involved.


Subject(s)
Coloring Agents/metabolism , Industrial Microbiology , Industrial Waste , Pleurotus/metabolism , Polyporales/metabolism , Textile Industry , Biodegradation, Environmental , Bioreactors/microbiology , Cells, Immobilized/metabolism , Fermentation , Pleurotus/enzymology , Polyporales/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...