Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Cell Rep Med ; 5(3): 101437, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38428428

ABSTRACT

Leber hereditary optic neuropathy (LHON) is a mitochondrial disease leading to rapid and severe bilateral vision loss. Idebenone has been shown to be effective in stabilizing and restoring vision in patients treated within 1 year of onset of vision loss. The open-label, international, multicenter, natural history-controlled LEROS study (ClinicalTrials.gov NCT02774005) assesses the efficacy and safety of idebenone treatment (900 mg/day) in patients with LHON up to 5 years after symptom onset (N = 199) and over a treatment period of 24 months, compared to an external natural history control cohort (N = 372), matched by time since symptom onset. LEROS meets its primary endpoint and confirms the long-term efficacy of idebenone in the subacute/dynamic and chronic phases; the treatment effect varies depending on disease phase and the causative mtDNA mutation. The findings of the LEROS study will help guide the clinical management of patients with LHON.


Subject(s)
Optic Atrophy, Hereditary, Leber , Ubiquinone/analogs & derivatives , Humans , Optic Atrophy, Hereditary, Leber/drug therapy , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/diagnosis , Antioxidants/therapeutic use , Ubiquinone/therapeutic use , Ubiquinone/genetics , Mutation
3.
Klin Monbl Augenheilkd ; 241(3): 259-265, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38508214

ABSTRACT

Retinal dystrophies linked to the RPE65 gene are mostly fast-progressing retinal diseases, with childhood onset of night blindness and progressive visual loss up to the middle adult age. Rare phenotypes linked to this gene are known with congenital stationary night blindness or slowly progressing retinitis pigmentosa, as well as an autosomal dominant c.1430A>G (p.Asp477Gly) variant. This review gives an overview of the current knowledge of the clinical phenotypes, as well as experience with the efficacy and safety of the approved gene augmentation therapy voretigene neparvovec.


Subject(s)
Night Blindness , Retinal Dystrophies , Retinitis Pigmentosa , Adult , Child , Humans , cis-trans-Isomerases/genetics , Genetic Therapy , Mutation , Night Blindness/therapy , Phenotype , Retinal Dystrophies/diagnosis , Retinal Dystrophies/genetics , Retinal Dystrophies/therapy , Retinitis Pigmentosa/diagnosis , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/therapy
4.
Eur J Ophthalmol ; : 11206721241239717, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38494950

ABSTRACT

INTRODUCTION: The intraocular lens (IOL) can be used as a slow-release drug carrier in cataract surgery to alleviate posterior capsular opacification (PCO). The following is a systematic development of an IOL using methotrexate and the solvent casting process with poly (lactic-co-glycolic acid) (PLGA) as a carrier polymer. METHODS: Different solvents for PLGA and methotrexate were tested for dissolution properties and possible damage to the IOL. The required biological concentration of methotrexate was determined in human capsular bags implanted with an IOL. To detect fibrosis, α-SMA, f-actin, and fibronectin were labelled by immunofluorescence staining. Cell proliferation and extracellular matrix contraction were observed in a lens epithelial cell line (FHL-124). Finally, the IOL was designed, and an ocular pharmacokinetic model was used to measure drug release. RESULTS: Solvent mixtures were found to allow coating of the IOL with drug and PLGA without damaging it. PCO in the capsular bag model was inhibited above 1 µM methotrexate (p = 0.02). Proliferation in FHL-124 was significantly reduced above a concentration of 10 nM (p = 0.04) and matrix contraction at 100 nM (p = 0.02). The release profile showed a steady state within therapeutic range. CONCLUSION: After determination of the required physicochemical manufacturing conditions, a drug releasing IOL was designed. A favourable release profile in an ocular pharmacokinetics model could be shown.

5.
Cell Rep Med ; 5(2): 101383, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38272025

ABSTRACT

Idebenone, the only approved treatment for Leber hereditary optic neuropathy (LHON), promotes recovery of visual function in up to 50% of patients, but we can neither predict nor understand the non-responders. Idebenone is reduced by the cytosolic NAD(P)H oxidoreductase I (NQO1) and directly shuttles electrons to respiratory complex III, bypassing complex I affected in LHON. We show here that two polymorphic variants drastically reduce NQO1 protein levels when homozygous or compound heterozygous. This hampers idebenone reduction. In its oxidized form, idebenone inhibits complex I, decreasing respiratory function in cells. By retrospectively analyzing a large cohort of idebenone-treated LHON patients, classified by their response to therapy, we show that patients with homozygous or compound heterozygous NQO1 variants have the poorest therapy response, particularly if carrying the m.3460G>A/MT-ND1 LHON mutation. These results suggest consideration of patient NQO1 genotype and mitochondrial DNA mutation in the context of idebenone therapy.


Subject(s)
Optic Atrophy, Hereditary, Leber , Ubiquinone/analogs & derivatives , Humans , Optic Atrophy, Hereditary, Leber/drug therapy , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/metabolism , Antioxidants/therapeutic use , Antioxidants/pharmacology , Retrospective Studies , Ubiquinone/pharmacology , Ubiquinone/therapeutic use , Ubiquinone/metabolism , Electron Transport Complex I/genetics , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL