Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 5466, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37749075

ABSTRACT

The interplay between 3D chromatin architecture and gene silencing is incompletely understood. Here, we report a novel point mutation in the non-canonical SMC protein SMCHD1 that enhances its silencing capacity at endogenous developmental targets. Moreover, it also results in enhanced silencing at the facioscapulohumeral muscular dystrophy associated macrosatellite-array, D4Z4, resulting in enhanced repression of DUX4 encoded by this repeat. Heightened SMCHD1 silencing perturbs developmental Hox gene activation, causing a homeotic transformation in mice. Paradoxically, the mutant SMCHD1 appears to enhance insulation against other epigenetic regulators, including PRC2 and CTCF, while depleting long range chromatin interactions akin to what is observed in the absence of SMCHD1. These data suggest that SMCHD1's role in long range chromatin interactions is not directly linked to gene silencing or insulating the chromatin, refining the model for how the different levels of SMCHD1-mediated chromatin regulation interact to bring about gene silencing in normal development and disease.


Subject(s)
Chromatin , Chromosomal Proteins, Non-Histone , Muscular Dystrophy, Facioscapulohumeral , Animals , Mice , Chromatin/genetics , Epigenomics , Gene Silencing , Genes, Homeobox , Muscular Dystrophy, Facioscapulohumeral/genetics , Chromosomal Proteins, Non-Histone/genetics
2.
Neurobiol Dis ; 185: 106259, 2023 09.
Article in English | MEDLINE | ID: mdl-37573958

ABSTRACT

The vacuolar protein sorting-associated protein 13B (VPS13B) is a large and highly conserved protein. Disruption of VPS13B causes the autosomal recessive Cohen syndrome, a rare disorder characterized by microcephaly and intellectual disability among other features, including developmental delay, hypotonia, and friendly-personality. However, the underlying mechanisms by which VPS13B disruption leads to brain dysfunction still remain unexplained. To gain insights into the neuropathogenesis of Cohen syndrome, we systematically characterized brain changes in Vps13b-mutant mice and compared murine findings to 235 previously published and 17 new patients diagnosed with VPS13B-related Cohen syndrome. We showed that Vps13b is differentially expressed across brain regions with the highest expression in the cerebellum, the hippocampus and the cortex with postnatal peak. Half of the Vps13b-/- mice die during the first week of life. The remaining mice have a normal lifespan and display the core phenotypes of the human disease, including microcephaly, growth delay, hypotonia, altered memory, and enhanced sociability. Systematic 2D and 3D brain histo-morphological analyses reveal specific structural changes in the brain starting after birth. The dentate gyrus is the brain region with the most prominent reduction in size, while the motor cortex is specifically thinner in layer VI. The fornix, the fasciculus retroflexus, and the cingulate cortex remain unaffected. Interestingly, these neuroanatomical changes implicate an increase of neuronal death during infantile stages with no progression in adulthood suggesting that VPS13B promotes neuronal survival early in life. Importantly, whilst both sexes were affected, some neuroanatomical and behavioral phenotypes were less pronounced or even absent in females. We evaluate sex differences in Cohen patients and conclude that females are less affected both in mice and patients. Our findings provide new insights about the neurobiology of VPS13B and highlight previously unreported brain phenotypes while defining Cohen syndrome as a likely new entity of non-progressive infantile neurodegeneration.


Subject(s)
Microcephaly , Retinal Degeneration , Child , Humans , Male , Female , Animals , Mice , Microcephaly/genetics , Microcephaly/pathology , Muscle Hypotonia/genetics , Muscle Hypotonia/pathology , Retinal Degeneration/genetics , Developmental Disabilities/genetics , Phenotype
3.
Cardiovasc Res ; 119(11): 2074-2088, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37067297

ABSTRACT

AIMS: Nuclear envelope integrity is essential for the compartmentalization of the nucleus and cytoplasm. Importantly, mutations in genes encoding nuclear envelope (NE) and associated proteins are the second highest cause of familial dilated cardiomyopathy. One such NE protein that causes cardiomyopathy in humans and affects mouse heart development is Lem2. However, its role in the heart remains poorly understood. METHODS AND RESULTS: We generated mice in which Lem2 was specifically ablated either in embryonic cardiomyocytes (Lem2 cKO) or in adult cardiomyocytes (Lem2 iCKO) and carried out detailed physiological, tissue, and cellular analyses. High-resolution episcopic microscopy was used for three-dimensional reconstructions and detailed morphological analyses. RNA-sequencing and immunofluorescence identified altered pathways and cellular phenotypes, and cardiomyocytes were isolated to interrogate nuclear integrity in more detail. In addition, echocardiography provided a physiological assessment of Lem2 iCKO adult mice. We found that Lem2 was essential for cardiac development, and hearts from Lem2 cKO mice were morphologically and transcriptionally underdeveloped. Lem2 cKO hearts displayed high levels of DNA damage, nuclear rupture, and apoptosis. Crucially, we found that these defects were driven by muscle contraction as they were ameliorated by inhibiting myosin contraction and L-type calcium channels. Conversely, reducing Lem2 levels to ∼45% in adult cardiomyocytes did not lead to overt cardiac dysfunction up to 18 months of age. CONCLUSIONS: Our data suggest that Lem2 is critical for integrity at the nascent NE in foetal hearts, and protects the nucleus from the mechanical forces of muscle contraction. In contrast, the adult heart is not detectably affected by partial Lem2 depletion, perhaps owing to a more established NE and increased adaptation to mechanical stress. Taken together, these data provide insights into mechanisms underlying cardiomyopathy in patients with mutations in Lem2 and cardio-laminopathies in general.


Subject(s)
Nuclear Envelope , Nuclear Proteins , Animals , Humans , Mice , DNA Damage , Heart , Mutation , Myocytes, Cardiac/metabolism , Nuclear Envelope/genetics , Nuclear Envelope/metabolism , Nuclear Proteins/genetics
4.
Circulation ; 147(12): 956-972, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36484244

ABSTRACT

BACKGROUND: Placental heart development and embryonic heart development occur in parallel, and these organs have been proposed to exert reciprocal regulation during gestation. Poor placentation has been associated with congenital heart disease, an important cause of infant mortality. However, the mechanisms by which altered placental development can lead to congenital heart disease remain unresolved. METHODS: In this study, we use an in vivo neutrophil-driven placental inflammation model through antibody depletion of maternal circulating neutrophils at key stages during time-mated murine pregnancy: embryonic days 4.5 and 7.5. Pregnant mice were culled at embryonic day 14.5 to assess placental and embryonic heart development. A combination of flow cytometry, histology, and bulk RNA sequencing was used to assess placental immune cell composition and tissue architecture. We also used flow cytometry and single-cell sequencing to assess embryonic cardiac immune cells at embryonic day 14.5 and histology and gene analyses to investigate embryonic heart structure and development. In some cases, offspring were culled at postnatal days 5 and 28 to assess any postnatal cardiac changes in immune cells, structure, and cardiac function, as measured by echocardiography. RESULTS: In the present study, we show that neutrophil-driven placental inflammation leads to inadequate placental development and loss of barrier function. Consequently, placental inflammatory monocytes of maternal origin become capable of migration to the embryonic heart and alter the normal composition of resident cardiac macrophages and cardiac tissue structure. This cardiac impairment continues into postnatal life, hindering normal tissue architecture and function. Last, we show that tempering placental inflammation can prevent this fetal cardiac defect and is sufficient to promote normal cardiac function in postnatal life. CONCLUSIONS: Taken together, these observations provide a mechanistic paradigm whereby neutrophil-driven inflammation in pregnancy can preclude normal embryonic heart development as a direct consequence of poor placental development, which has major implications on cardiac function into adult life.


Subject(s)
Heart Defects, Congenital , Placenta , Pregnancy , Female , Mice , Animals , Placenta/pathology , Placentation , Fetus , Inflammation/pathology
5.
Front Cell Dev Biol ; 10: 1006620, 2022.
Article in English | MEDLINE | ID: mdl-36438572

ABSTRACT

Careful phenotype analysis of genetically altered mouse embryos/fetuses is vital for deciphering the function of pre- and perinatally lethal genes. Usually this involves comparing the anatomy of mutants with that of wild types of identical developmental stages. Detailed three dimensional information on regular cranial nerve (CN) anatomy of prenatal mice is very scarce. We therefore set out to provide such information to be used as reference data and selected mutants to demonstrate its potential for diagnosing CN abnormalities. Digital volume data of 152 wild type mice, harvested on embryonic day (E)14.5 and of 18 mutants of the Col4a2, Arid1b, Rpgrip1l and Cc2d2a null lines were examined. The volume data had been created with High Resolution Episcopic Microscopy (HREM) as part of the deciphering the mechanisms of developmental disorders (DMDD) program. Employing volume and surface models, oblique slicing and digital measuring tools, we provide highly detailed anatomic descriptions of the CNs and measurements of the diameter of selected segments. Specifics of the developmental stages of E14.5 mice and anatomic norm variations were acknowledged. Using the provided data as reference enabled us to objectively diagnose CN abnormalities, such as abnormal formation of CN3 (Col4a2), neuroma of the motor portion of CN5 (Arid1b), thinning of CN7 (Rpgrip1l) and abnormal topology of CN12 (Cc2d2a). Although, in a first glimpse perceived as unspectacular, defects of the motor CN5 or CN7, like enlargement or thinning can cause death of newborns, by hindering feeding. Furthermore, abnormal topology of CN12 was recently identified as a highly reliable marker for low penetrating, but potentially lethal defects of the central nervous system.

6.
Biochem J ; 479(13): 1467-1486, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35730579

ABSTRACT

The protein kinase PKN2 is required for embryonic development and PKN2 knockout mice die as a result of failure in the expansion of mesoderm, cardiac development and neural tube closure. In the adult, cardiomyocyte PKN2 and PKN1 (in combination) are required for cardiac adaptation to pressure-overload. The specific role of PKN2 in contractile cardiomyocytes during development and its role in the adult heart remain to be fully established. We used mice with cardiomyocyte-directed knockout of PKN2 or global PKN2 haploinsufficiency to assess cardiac development and function using high resolution episcopic microscopy, MRI, micro-CT and echocardiography. Biochemical and histological changes were also assessed. Cardiomyocyte-directed PKN2 knockout embryos displayed striking abnormalities in the compact myocardium, with frequent myocardial clefts and diverticula, ventricular septal defects and abnormal heart shape. The sub-Mendelian homozygous knockout survivors developed cardiac failure. RNASeq data showed up-regulation of PKN2 in patients with dilated cardiomyopathy, suggesting an involvement in adult heart disease. Given the rarity of homozygous survivors with cardiomyocyte-specific deletion of PKN2, the requirement for PKN2 in adult mice was explored using the constitutive heterozygous PKN2 knockout. Cardiac hypertrophy resulting from hypertension induced by angiotensin II was reduced in these haploinsufficient PKN2 mice relative to wild-type littermates, with suppression of cardiomyocyte hypertrophy and cardiac fibrosis. It is concluded that cardiomyocyte PKN2 is essential for heart development and the formation of compact myocardium and is also required for cardiac hypertrophy in hypertension. Thus, PKN signalling may offer therapeutic options for managing congenital and adult heart diseases.


Subject(s)
Cardiomyopathies , Hypertension , Protein Kinase C/metabolism , Angiotensin II/metabolism , Angiotensin II/pharmacology , Animals , Cardiomegaly/metabolism , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Female , Hypertension/metabolism , Hypertension/pathology , Mice , Mice, Knockout , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Pregnancy
7.
J Anat ; 240(1): 11-22, 2022 01.
Article in English | MEDLINE | ID: mdl-34435363

ABSTRACT

Approximately one-third of randomly produced knockout mouse lines produce homozygous offspring, which fail to survive the perinatal period. The majority of these die around or after embryonic day (E)14.5, presumably from cardiovascular insufficiency. For diagnosing structural abnormalities underlying death and diseases and for researching gene function, the phenotype of these individuals has to be analysed. This makes the creation of reference data, which define normal anatomy and normal variations the highest priority. While such data do exist for the heart and arteries, they are still missing for the venous system. Here we provide high-quality descriptive and metric information on the normal anatomy of the venous system of E14.5 embryos. Using high-resolution digital volume data and 3D models from 206 genetically normal embryos, bred on the C57BL/6N background, we present precise descriptive and metric information of the venous system as it presents itself in each of the six developmental stages of E14.5. The resulting data shed new light on the maturation and remodelling of the venous system at transition of embryo to foetal life and provide a reference that can be used for detecting venous abnormalities in mutants. To explore this capacity, we analysed the venous phenotype of embryos from 7 knockout lines (Atp11a, Morc2a, 1700067K01Rik, B9d2, Oaz1, Celf4 and Coro1c). Careful comparisons enabled the diagnosis of not only simple malformations, such as dual inferior vena cava, but also complex and subtle abnormalities, which would have escaped diagnosis in the absence of detailed, stage-specific referenced data.


Subject(s)
Embryo, Mammalian , Animals , Female , Gene Deletion , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Pregnancy
8.
Biomedicines ; 9(11)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34829939

ABSTRACT

High resolution episcopic microscopy (HREM) produces digital volume data by physically sectioning histologically processed specimens, while capturing images of the subsequently exposed block faces. Our study aims to systematically define the spectrum of typical artefacts inherent to HREM data and to research their effect on the interpretation of the phenotype of wildtype and mutant mouse embryos. A total of 607 (198 wildtypes, 409 mutants) HREM data sets of mouse embryos harvested at embryonic day (E) 14.5 were systematically and comprehensively examined. The specimens had been processed according to essentially identical protocols. Each data set comprised 2000 to 4000 single digital images. Voxel dimensions were 3 × 3 × 3 µm3. Using 3D volume models and virtual resections, we identified a number of characteristic artefacts and grouped them according to their most likely causality. Furthermore, we highlight those that affect the interpretation of embryo data and provide examples for artefacts mimicking tissue defects and structural pathologies. Our results aid in optimizing specimen preparation and data generation, are vital for the correct interpretation of HREM data and allow distinguishing tissue defects and pathologies from harmless artificial alterations. In particular, they enable correct diagnosis of pathologies in mouse embryos serving as models for deciphering the mechanisms of developmental disorders.

9.
Nat Commun ; 12(1): 3447, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103494

ABSTRACT

Congenital heart disease (CHD) is the most common class of human birth defects, with a prevalence of 0.9% of births. However, two-thirds of cases have an unknown cause, and many of these are thought to be caused by in utero exposure to environmental teratogens. Here we identify a potential teratogen causing CHD in mice: maternal iron deficiency (ID). We show that maternal ID in mice causes severe cardiovascular defects in the offspring. These defects likely arise from increased retinoic acid signalling in ID embryos. The defects can be prevented by iron administration in early pregnancy. It has also been proposed that teratogen exposure may potentiate the effects of genetic predisposition to CHD through gene-environment interaction. Here we show that maternal ID increases the severity of heart and craniofacial defects in a mouse model of Down syndrome. It will be important to understand if the effects of maternal ID seen here in mice may have clinical implications for women.


Subject(s)
Cardiovascular System/embryology , Embryo, Mammalian/pathology , Iron Deficiencies , Animals , Aorta, Thoracic/abnormalities , Biomarkers/metabolism , Cell Differentiation , Coronary Vessels/embryology , Coronary Vessels/pathology , Dietary Supplements , Edema/pathology , Embryo, Mammalian/abnormalities , Embryonic Development , Female , Gene Expression Profiling , Gene-Environment Interaction , Green Fluorescent Proteins/metabolism , Iron/metabolism , Lymphatic Vessels/embryology , Lymphatic Vessels/pathology , Mice, Inbred C57BL , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Penetrance , Phenotype , Pregnancy , Signal Transduction , Stem Cells/pathology , Transgenes , Tretinoin/metabolism
10.
Front Neuroanat ; 15: 625716, 2021.
Article in English | MEDLINE | ID: mdl-33584208

ABSTRACT

An essential step in researching human central nervous system (CNS) disorders is the search for appropriate mouse models that can be used to investigate both genetic and environmental factors underlying the etiology of such conditions. Identification of murine models relies upon detailed pre- and post-natal phenotyping since profound defects are not only the result of gross malformations but can be the result of small or subtle morphological abnormalities. The difficulties in identifying such defects are compounded by the finding that many mouse lines show quite a variable penetrance of phenotypes. As a result, without analysis of large numbers, such phenotypes are easily missed. Indeed for null mutations, around one-third have proved to be pre- or perinatally lethal, their analysis resting entirely upon phenotyping of accessible embryonic stages.To simplify the identification of potentially useful mouse mutants, we have conducted three-dimensional phenotype analysis of approximately 500 homozygous null mutant embryos, produced from targeting a variety of mouse genes and harvested at embryonic day 14.5 as part of the "Deciphering the Mechanisms of Developmental Disorders" www.dmdd.org.uk program. We have searched for anatomical features that have the potential to serve as biomarkers for CNS defects in such genetically modified lines. Our analysis identified two promising biomarker candidates. Hypoglossal nerve (HGN) abnormalities (absent, thin, and abnormal topology) and abnormal morphology or topology of head arteries are both frequently associated with the full spectrum of morphological CNS defects, ranging from exencephaly to more subtle defects such as abnormal nerve cell migration. Statistical analysis confirmed that HGN abnormalities (especially those scored absent or thin) indeed showed a significant correlation with CNS defect phenotypes. These results demonstrate that null mutant lines showing HGN abnormalities are also highly likely to produce CNS defects whose identification may be difficult as a result of morphological subtlety or low genetic penetrance.

11.
Development ; 147(21)2020 11 12.
Article in English | MEDLINE | ID: mdl-32994166

ABSTRACT

The Hippo-YAP/TAZ pathway is an important regulator of tissue growth, but can also control cell fate or tissue morphogenesis. Here, we investigate the function of the Hippo pathway during the development of cartilage, which forms the majority of the skeleton. Previously, YAP was proposed to inhibit skeletal size by repressing chondrocyte proliferation and differentiation. We find that, in vitro, Yap/Taz double knockout impairs murine chondrocyte proliferation, whereas constitutively nuclear nls-YAP5SA accelerates proliferation, in line with the canonical role of this pathway in most tissues. However, in vivo, cartilage-specific knockout of Yap/Taz does not prevent chondrocyte proliferation, differentiation or skeletal growth, but rather results in various skeletal deformities including cleft palate. Cartilage-specific expression of nls-YAP5SA or knockout of Lats1/2 do not increase cartilage growth, but instead lead to catastrophic malformations resembling chondrodysplasia or achondrogenesis. Physiological YAP target genes in cartilage include Ctgf, Cyr61 and several matrix remodelling enzymes. Thus, YAP/TAZ activity controls chondrocyte proliferation in vitro, possibly reflecting a regenerative response, but is dispensable for chondrocyte proliferation in vivo, and instead functions to control cartilage morphogenesis via regulation of the extracellular matrix.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Bone and Bones/embryology , Bone and Bones/metabolism , Cell Cycle Proteins/metabolism , Morphogenesis , Protein Serine-Threonine Kinases/metabolism , Trans-Activators/metabolism , Animals , Bone and Bones/abnormalities , Bone and Bones/pathology , Cartilage/pathology , Cell Nucleus/metabolism , Cell Proliferation , Chondrocytes/metabolism , Chondrocytes/pathology , Cleft Palate/pathology , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Gene Expression Regulation, Developmental , Growth Plate/pathology , Hippo Signaling Pathway , Mice , Mice, Inbred C57BL , Mice, Knockout , Morphogenesis/genetics , Signal Transduction , Tumor Suppressor Proteins/metabolism , YAP-Signaling Proteins
12.
Biol Open ; 8(8)2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31331924

ABSTRACT

The Deciphering the Mechanisms of Developmental Disorders (DMDD) program uses a systematic and standardised approach to characterise the phenotype of embryos stemming from mouse lines, which produce embryonically lethal offspring. Our study aims to provide detailed phenotype descriptions of homozygous Col4a2em1(IMPC)Wtsi mutants produced in DMDD and harvested at embryonic day 14.5. This shall provide new information on the role Col4a2 plays in organogenesis and demonstrate the capacity of the DMDD database for identifying models for researching inherited disorders. The DMDD Col4a2em1(IMPC)Wtsi mutants survived organogenesis and thus revealed the full spectrum of organs and tissues, the development of which depends on Col4a2 encoded proteins. They showed defects in the brain, cranial nerves, visual system, lungs, endocrine glands, skeleton, subepithelial tissues and mild to severe cardiovascular malformations. Together, this makes the DMDD Col4a2em1(IMPC)Wtsi line a useful model for identifying the spectrum of defects and for researching the mechanisms underlying autosomal dominant porencephaly 2 (OMIM # 614483), a rare human disease. Thus we demonstrate the general capacity of the DMDD approach and webpage as a valuable source for identifying mouse models for rare diseases.

13.
Am J Hum Genet ; 104(5): 985-989, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31006513

ABSTRACT

We report a recurrent CNOT1 de novo missense mutation, GenBank: NM_016284.4; c.1603C>T (p.Arg535Cys), resulting in a syndrome of pancreatic agenesis and abnormal forebrain development in three individuals and a similar phenotype in mice. CNOT1 is a transcriptional repressor that has been suggested as being critical for maintaining embryonic stem cells in a pluripotent state. These findings suggest that CNOT1 plays a critical role in pancreatic and neurological development and describe a novel genetic syndrome of pancreatic agenesis and holoprosencephaly.


Subject(s)
Developmental Disabilities/etiology , Holoprosencephaly/etiology , Infant, Newborn, Diseases/etiology , Mutation , Nervous System Diseases/etiology , Pancreas/abnormalities , Pancreatic Diseases/congenital , Transcription Factors/genetics , Amino Acid Sequence , Animals , Developmental Disabilities/pathology , Embryo, Mammalian/metabolism , Embryo, Mammalian/pathology , Female , Holoprosencephaly/pathology , Humans , Infant , Infant, Newborn , Infant, Newborn, Diseases/pathology , Male , Mice , Mice, Knockout , Nervous System Diseases/pathology , Pancreas/pathology , Pancreatic Diseases/etiology , Pancreatic Diseases/pathology , Pedigree , Phenotype , Sequence Homology , Syndrome
14.
J Cardiovasc Dev Dis ; 5(4)2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30558275

ABSTRACT

The article will briefly introduce the high-resolution episcopic microscopy (HREM) technique and will focus on its potential for researching cardiovascular development and remodelling in embryos of biomedical model organisms. It will demonstrate the capacity of HREM for analysing the cardiovascular system of normally developed and genetically or experimentally malformed zebrafish, frog, chick and mouse embryos in the context of the whole specimen and will exemplarily show the possibilities HREM offers for comprehensive visualisation of the vasculature of adult human skin. Finally, it will provide examples of the successful application of HREM for identifying cardiovascular malformations in genetically altered mouse embryos produced in the deciphering the mechanisms of developmental disorders (DMDD) program.

15.
J Anat ; 231(4): 600-614, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28776665

ABSTRACT

Accurate identification of abnormalities in the mouse embryo depends not only on comparisons with appropriate, developmental stage-matched controls, but also on an appreciation of the range of anatomical variation that can be expected during normal development. Here we present a morphological, topological and metric analysis of the heart and arteries of mouse embryos harvested on embryonic day (E)14.5, based on digital volume data of whole embryos analysed by high-resolution episcopic microscopy (HREM). By comparing data from 206 genetically normal embryos, we have analysed the range and frequency of normal anatomical variations in the heart and major arteries across Theiler stages S21-S23. Using this, we have identified abnormalities in these structures among 298 embryos from mutant mouse lines carrying embryonic lethal gene mutations produced for the Deciphering the Mechanisms of Developmental Disorders (DMDD) programme. We present examples of both commonly occurring abnormal phenotypes and novel pathologies that most likely alter haemodynamics in these genetically altered mouse embryos. Our findings offer a reference baseline for identifying accurately abnormalities of the heart and arteries in embryos that have largely completed organogenesis.


Subject(s)
Arteries/pathology , Embryo, Mammalian/pathology , Heart/embryology , Mutation , Myocardium/pathology , Animals , Female , Mice , Mice, Inbred C57BL
16.
J Anat ; 230(5): 710-719, 2017 May.
Article in English | MEDLINE | ID: mdl-28185240

ABSTRACT

We present a simple and quick system for accurately scoring the developmental progress of mouse embryos harvested on embryonic day 14 (E14.5). Based solely on the external appearance of the maturing forelimb, we provide a convenient way to distinguish six developmental sub-stages. Using a variety of objective morphometric data obtained from the commonly used C57BL/6N mouse strain, we show that these stages correlate precisely with the growth of the entire embryo and its organs. Applying the new staging system to phenotype analyses of E14.5 embryos of 58 embryonic lethal null mutant lines from the DMDD research programme (https://dmdd.org.uk) and its pilot, we show that homozygous mutant embryos are frequently delayed in development. To demonstrate the importance of our staging system for correct phenotype interpretation, we describe stage-specific changes of the palate, heart and gut, and provide examples in which correct diagnosis of malformations relies on correct staging.


Subject(s)
Embryonic Development/physiology , Phenotype , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation/physiology , Species Specificity
17.
Wellcome Open Res ; 1: 1, 2016.
Article in English | MEDLINE | ID: mdl-27996060

ABSTRACT

Background: Identifying genes that are essential for mouse embryonic development and survival through term is a powerful and unbiased way to discover possible genetic determinants of human developmental disorders. Characterising the changes in mouse embryos that result from ablation of lethal genes is a necessary first step towards uncovering their role in normal embryonic development and establishing any correlates amongst human congenital abnormalities. Methods: Here we present results gathered to date in the Deciphering the Mechanisms of Developmental Disorders (DMDD) programme, cataloguing the morphological defects identified from comprehensive imaging of 220 homozygous mutant and 114 wild type embryos from 42 lethal and subviable lines, analysed at E14.5. Results: Virtually all mutant embryos show multiple abnormal phenotypes and amongst the 42 lines these affect most organ systems. Within each mutant line, the phenotypes of individual embryos form distinct but overlapping sets. Subcutaneous edema, malformations of the heart or great vessels, abnormalities in forebrain morphology and the musculature of the eyes are all prevalent phenotypes, as is loss or abnormal size of the hypoglossal nerve.Conclusions: Overall, the most striking finding is that no matter how profound the malformation, each phenotype shows highly variable penetrance within a mutant line. These findings have challenging implications for efforts to identify human disease correlates.

18.
Development ; 141(7): 1492-502, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24574009

ABSTRACT

Hox genes encode a conserved family of homeodomain transcription factors regulating development along the major body axis. During embryogenesis, Hox proteins are expressed in segment-specific patterns and control numerous different segment-specific cell fates. It has been unclear, however, whether Hox proteins drive the epithelial cell segregation mechanism that is thought to initiate the segmentation process. Here, we investigate the role of vertebrate Hox proteins during the partitioning of the developing hindbrain into lineage-restricted units called rhombomeres. Loss-of-function mutants and ectopic expression assays reveal that Hoxb4 and its paralogue Hoxd4 are necessary and sufficient for cell segregation, and for the most caudal rhombomere boundary (r6/r7). Hox4 proteins regulate Eph/ephrins and other cell-surface proteins, and can function in a non-cell-autonomous manner to induce apical cell enlargement on both sides of their expression border. Similarly, other Hox proteins expressed at more rostral rhombomere interfaces can also regulate Eph/ephrins, induce apical remodelling and drive cell segregation in ectopic expression assays. However, Krox20, a key segmentation factor expressed in odd rhombomeres (r3 and r5), can largely override Hox proteins at the level of regulation of a cell surface target, Epha4. This study suggests that most, if not all, Hox proteins share a common potential to induce cell segregation but in some contexts this is masked or modulated by other transcription factors.


Subject(s)
Body Patterning/genetics , Cell Movement/genetics , Homeodomain Proteins/physiology , Rhombencephalon/embryology , Animals , Animals, Genetically Modified , Chick Embryo , Embryo, Mammalian , Female , Gene Expression Regulation, Developmental , Genes, Homeobox/physiology , Membrane Proteins/genetics , Mice , Rhombencephalon/metabolism , Transcription Factors/physiology
19.
Nat Neurosci ; 10(11): 1433-9, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17922007

ABSTRACT

In many regions of the developing CNS, distinct cell types are born at different times. The means by which discrete and stereotyped temporal switches in cellular identities are acquired remains poorly understood. To address this, we have examined how visceral motor neurons (VMNs) and serotonergic neurons, two neuronal subtypes, are sequentially generated from a common progenitor pool in the vertebrate hindbrain. We found that the forkhead transcription factor Foxa2, acting in progenitors, is essential for the transition from VMN to serotonergic neurogenesis. Loss-of-function and gain-of-function experiments indicated that Foxa2 activates the switch through a temporal cross-repressive interaction with paired-like homeobox 2b (Phox2b), the VMN progenitor determinant. This mechanism bears a marked resemblance to the cross-repression between neighboring domains of transcription factors that establish discrete progenitor identities along the spatial axes. Moreover, the subsequent differentiation of central serotonergic neurons required both the suppression of VMN neurogenesis and the induction of downstream intrinsic determinants of serotonergic identity by Foxa2.


Subject(s)
Cell Differentiation/physiology , Gene Expression Regulation, Developmental/physiology , Neurons/physiology , Serotonin/metabolism , Stem Cells/physiology , Transcription Factors/physiology , Age Factors , Animals , Body Patterning/physiology , Bromodeoxyuridine/metabolism , Chick Embryo , Electroporation/methods , Embryo, Mammalian , Hepatocyte Nuclear Factor 3-beta/metabolism , Homeodomain Proteins/metabolism , Mice , Mice, Mutant Strains , Neurons/cytology , Rhombencephalon/cytology , Rhombencephalon/embryology , Signal Transduction/physiology , Transcription Factors/metabolism , Transcription, Genetic/physiology
20.
Dev Biol ; 279(2): 402-19, 2005 Mar 15.
Article in English | MEDLINE | ID: mdl-15733668

ABSTRACT

In this study, we investigate the possible role of ephrin-Eph signaling in trigeminal motor axon projections. We find that EphA receptors are expressed at higher levels by rhombomere 2 (r2) trigeminal motor neurons than by r3 trigeminal motor neurons in the chick embryo. Mapping of rhombomere-specific axon projections shows that r2 and r3 trigeminal motor neurons project to different muscle targets, including the mandibular adductor and the intermandibularis muscles respectively. Ephrin-A5 is expressed in these muscles, especially in some regions of the intermandibularis muscle, and can cause growth cone collapse of both r2 and r3 motor axons in vitro. We demonstrate that in vivo overexpression of ephrin-A5 in the intermandibularis muscle, or overexpression of dominant-negative EphA receptors in trigeminal motor neurons leads to a reduction in branching of r3-derived motor axons specifically. Overexpression of full-length EphA receptors impairs the formation of r3 projections to the intermandibularis muscle. These findings indicate that ephrins and their Eph receptors play a role in trigeminal motor axon topographic mapping and in rhombomere 3-derived projections in particular.


Subject(s)
Body Patterning , Chick Embryo/physiology , Ephrin-A5/metabolism , Motor Neurons/physiology , Muscle, Skeletal/innervation , Trigeminal Nerve/embryology , Animals , Chick Embryo/anatomy & histology , Ephrin-A5/genetics , Immunohistochemistry , In Situ Hybridization , Morphogenesis/physiology , Motor Neurons/cytology , Muscle, Skeletal/embryology , Receptors, Eph Family/genetics , Receptors, Eph Family/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Signal Transduction/physiology , Trigeminal Nerve/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...