Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 14(1): 24-31, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36562987

ABSTRACT

An open-loop control scheme of molecular fragmentation based on transient molecular alignment combined with single-photon ionization induced by a short-wavelength free electron laser (FEL) is demonstrated for the acetylene cation. Photoelectron spectra are recorded, complementing the ion yield measurements, to demonstrate that such control is the consequence of changes in the electronic response with molecular orientation relative to the ionizing field. We show that stable C2H2+ cations are mainly produced when the molecules are parallel or nearly parallel to the FEL polarization, while the hydrogen fragmentation channel (C2H2+ → C2H+ + H) predominates when the molecule is perpendicular to that direction, thus allowing one to distinguish between the two photochemical processes. The experimental findings are supported by state-of-the art theoretical calculations.

2.
Phys Chem Chem Phys ; 24(47): 28844-28852, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36422471

ABSTRACT

Superfluid helium nanodroplets are often considered as transparent and chemically inert nanometer-sized cryo-matrices for high-resolution or time-resolved spectroscopy of embedded molecules and clusters. On the other hand, when the helium nanodroplets are resonantly excited with XUV radiation, a multitude of ultrafast processes are initiated, such as relaxation into metastable states, formation of nanoscopic bubbles or excimers, and autoionization channels generating low-energy free electrons. Here, we discuss the full spectrum of ultrafast relaxation processes observed when helium nanodroplets are electronically excited. In particular, we perform an in-depth study of the relaxation dynamics occurring in the lowest 1s2s and 1s2p droplet bands using high resolution, time-resolved photoelectron spectroscopy. The simplified excitation scheme and improved resolution allow us to identify the relaxation into metastable triplet and excimer states even when exciting below the droplets' autoionization threshold, unobserved in previous studies.

3.
Phys Rev Lett ; 127(9): 093201, 2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34506185

ABSTRACT

Clusters and nanodroplets hold the promise of enhancing high-order nonlinear optical effects due to their high local density. However, only moderate enhancement has been demonstrated to date. Here, we report the observation of energetic electrons generated by above-threshold ionization (ATI) of helium (He) nanodroplets which are resonantly excited by ultrashort extreme ultraviolet (XUV) free-electron laser pulses and subsequently ionized by near-infrared (NIR) or near-ultraviolet (UV) pulses. The electron emission due to high-order ATI is enhanced by several orders of magnitude compared with He atoms. The crucial dependence of the ATI intensities with the number of excitations in the droplets suggests a local collective enhancement effect.

4.
Nat Commun ; 11(1): 112, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31913265

ABSTRACT

The relaxation of photoexcited nanosystems is a fundamental process of light-matter interaction. Depending on the couplings of the internal degrees of freedom, relaxation can be ultrafast, converting electronic energy in a few fs, or slow, if the energy is trapped in a metastable state that decouples from its environment. Here, we study helium nanodroplets excited resonantly by femtosecond extreme-ultraviolet (XUV) pulses from a seeded free-electron laser. Despite their superfluid nature, we find that helium nanodroplets in the lowest electronically excited states undergo ultrafast relaxation. By comparing experimental photoelectron spectra with time-dependent density functional theory simulations, we unravel the full relaxation pathway: Following an ultrafast interband transition, a void nanometer-sized bubble forms around the localized excitation (He[Formula: see text]) within 1 ps. Subsequently, the bubble collapses and releases metastable He[Formula: see text] at the droplet surface. This study highlights the high level of detail achievable in probing the photodynamics of nanosystems using tunable XUV pulses.

5.
Phys Rev Lett ; 122(23): 233001, 2019 Jun 14.
Article in English | MEDLINE | ID: mdl-31298870

ABSTRACT

We introduce and present a theory of interferometric measurement of a normal Auger decay lifetime in molecules. Molecular Auger interferometry is based on the coherent phase control of Auger dynamics in a two-color (ω/2ω) laser field. We show that, in contrast to atoms, in oriented molecules of certain point groups the relative ω/2ω phase modulates the total ionization yield. A simple analytical formula is derived for the extraction of the lifetimes of Auger-active states from a molecular Auger interferogram, circumventing the need in either high-resolution or attosecond spectroscopy. We demonstrate the principle of the interferometric Auger lifetime measurement using inner-valence decay in CH_{3}F.

6.
Phys Rev Lett ; 122(13): 133001, 2019 Apr 05.
Article in English | MEDLINE | ID: mdl-31012607

ABSTRACT

Free electrons in a polar liquid can form a bound state via interaction with the molecular environment. This so-called hydrated electron state in water is of fundamental importance, e.g., in cellular biology or radiation chemistry. Hydrated electrons are highly reactive radicals that can either directly interact with DNA or enzymes, or form highly excited hydrogen (H^{*}) after being captured by protons. Here, we investigate the formation of the hydrated electron in real-time employing extreme ultraviolet femtosecond pulses from a free electron laser, in this way observing the initial steps of the hydration process. Using time-resolved photoelectron spectroscopy we find formation timescales in the low picosecond range and resolve the prominent dynamics of forming excited hydrogen states.

7.
J Chem Phys ; 149(21): 214702, 2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30525731

ABSTRACT

The super-bandgap laser irradiation of the in situ prepared As-S chalcogenide films was found to cause drastic structural transformations and unexpected selective diffusion processes, leading to As enrichment on the nanolayer surface. Excitation energy dependent synchrotron radiation photoelectron spectroscopy showed complete reversibility of the molecular transformations and selective laser-driven mass transport during "laser irradiation"-"thermal annealing" cycles. Molecular modeling and density functional theory calculations performed on As-rich cage-like clusters built from basic structural units indicate that the underlying microscopic mechanism of laser induced transformations is connected with the realgar-pararealgar transition in the As-S structure. The detected changes in surface composition as well as the related local and molecular structural transformations are analyzed and a model is proposed and discussed in detail. It is suggested that the formation of a concentration gradient is a result of bond cleavage and molecular reorientation during transformations and anisotropic molecular diffusion.

8.
Phys Rev Lett ; 121(10): 103002, 2018 Sep 07.
Article in English | MEDLINE | ID: mdl-30240272

ABSTRACT

The role of the nuclear degrees of freedom in nonlinear two-photon single ionization of H_{2} molecules interacting with short and intense vacuum ultraviolet pulses is investigated, both experimentally and theoretically, by selecting single resonant vibronic intermediate neutral states. This high selectivity relies on the narrow bandwidth and tunability of the pulses generated at the FERMI free-electron laser. A sustained enhancement of dissociative ionization, which even exceeds nondissociative ionization, is observed and controlled as one selects progressively higher vibronic states. With the help of ab initio calculations for increasing pulse durations, the photoelectron and ion energy spectra obtained with velocity map imaging allow us to identify new photoionization pathways. With pulses of the order of 100 fs, the experiment probes a timescale that lies between that of ultrafast dynamical processes and that of steady state excitations.

9.
Nat Commun ; 9(1): 63, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29302026

ABSTRACT

The first steps in photochemical processes, such as photosynthesis or animal vision, involve changes in electronic and geometric structure on extremely short time scales. Time-resolved photoelectron spectroscopy is a natural way to measure such changes, but has been hindered hitherto by limitations of available pulsed light sources in the vacuum-ultraviolet and soft X-ray spectral region, which have insufficient resolution in time and energy simultaneously. The unique combination of intensity, energy resolution, and femtosecond pulse duration of the FERMI-seeded free-electron laser can now provide exceptionally detailed information on photoexcitation-deexcitation and fragmentation in pump-probe experiments on the 50-femtosecond time scale. For the prototypical system acetylacetone we report here electron spectra measured as a function of time delay with enough spectral and time resolution to follow several photoexcited species through well-characterized individual steps, interpreted using state-of-the-art static and dynamics calculations. These results open the way for investigations of photochemical processes in unprecedented detail.

10.
Phys Rev Lett ; 119(7): 073203, 2017 Aug 18.
Article in English | MEDLINE | ID: mdl-28949652

ABSTRACT

Single-photon laser-enabled Auger decay (spLEAD) is predicted theoretically [B. Cooper and V. Averbukh, Phys. Rev. Lett. 111, 083004 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.083004] and here we report its first experimental observation in neon. Using coherent, bichromatic free-electron laser pulses, we detect the process and coherently control the angular distribution of the emitted electrons by varying the phase difference between the two laser fields. Since spLEAD is highly sensitive to electron correlation, this is a promising method for probing both correlation and ultrafast hole migration in more complex systems.

11.
Phys Rev Lett ; 118(3): 033202, 2017 Jan 20.
Article in English | MEDLINE | ID: mdl-28157370

ABSTRACT

The hitherto unexplored two-photon doubly excited states [Ne^{*}(2p^{-1}3s)]_{2} were experimentally identified using the seeded, fully coherent, intense extreme ultraviolet free-electron laser FERMI. These states undergo ultrafast interatomic Coulombic decay (ICD), which predominantly produces singly ionized dimers. In order to obtain the rate of ICD, the resulting yield of Ne_{2}^{+} ions was recorded as a function of delay between the extreme ultraviolet pump and UV probe laser pulses. The extracted lifetimes of the long-lived doubly excited states, 390(-130/+450) fs, and of the short-lived ones, less than 150 fs, are in good agreement with ab initio quantum mechanical calculations.

12.
Phys Rev Lett ; 118(1): 013002, 2017 Jan 06.
Article in English | MEDLINE | ID: mdl-28106422

ABSTRACT

Intense, circularly polarized extreme-ultraviolet and near-infrared (NIR) laser pulses are combined to double ionize atomic helium via the oriented intermediate He^{+}(3p) resonance state. Applying angle-resolved electron spectroscopy, we find a large photon helicity dependence of the spectrum and the angular distribution of the electrons ejected from the resonance by NIR multiphoton absorption. The measured circular dichroism is unexpectedly found to vary strongly as a function of the NIR intensity. The experimental data are well described by theoretical modeling and possible mechanisms are discussed.

13.
Nat Commun ; 7: 13477, 2016 12 05.
Article in English | MEDLINE | ID: mdl-27917867

ABSTRACT

In high-intensity laser light, matter can be ionized by direct multiphoton absorption even at photon energies below the ionization threshold. However on tuning the laser to the lowest resonant transition, the system becomes multiply excited, and more efficient, indirect ionization pathways become operative. These mechanisms are known as interatomic Coulombic decay (ICD), where one of the species de-excites to its ground state, transferring its energy to ionize another excited species. Here we show that on tuning to a higher resonant transition, a previously unknown type of interatomic Coulombic decay, intra-Rydberg ICD occurs. In it, de-excitation of an atom to a close-lying Rydberg state leads to electron emission from another neighbouring Rydberg atom. Moreover, systems multiply excited to higher Rydberg states will decay by a cascade of such processes, producing even more ions. The intra-Rydberg ICD and cascades are expected to be ubiquitous in weakly-bound systems exposed to high-intensity resonant radiation.

14.
J Chem Phys ; 145(19): 191102, 2016 Nov 21.
Article in English | MEDLINE | ID: mdl-27875881

ABSTRACT

A combined experimental and theoretical approach has been used to disentangle the fundamental mechanisms of the fragmentation of the three isomers of nitroimidazole induced by vacuum ultra-violet (VUV) radiation, namely, 4-, 5-, and 2-nitroimidazole. The results of mass spectrometry as well as photoelectron-photoion coincidence spectroscopy display striking differences in the radiation-induced decomposition of the different nitroimidazole radical cations. Based on density functional theory (DFT) calculations, a model is proposed which fully explains such differences, and reveals the subtle fragmentation mechanisms leading to the release of neutral species like NO, CO, and HCN. Such species have a profound impact in biological media and may play a fundamental role in radiosensitising mechanisms during radiotherapy.


Subject(s)
Nitroimidazoles/chemistry , Photochemical Processes , Isomerism , Models, Molecular , Molecular Conformation , Quantum Theory
15.
Phys Rev Lett ; 116(20): 203001, 2016 May 20.
Article in English | MEDLINE | ID: mdl-27258866

ABSTRACT

We report the observation of electron-transfer-mediated decay (ETMD) involving magnesium (Mg) clusters embedded in helium (He) nanodroplets. ETMD is initiated by the ionization of He followed by removal of two electrons from the Mg clusters of which one is transferred to the He ion while the other electron is emitted into the continuum. The process is shown to be the dominant ionization mechanism for embedded clusters for photon energies above the ionization potential of He. For Mg clusters larger than five atoms we observe stable doubly ionized clusters. Thus, ETMD provides an efficient pathway to the formation of doubly ionized cold species in doped nanodroplets.

16.
Phys Rev Lett ; 117(27): 276806, 2016 Dec 30.
Article in English | MEDLINE | ID: mdl-28084773

ABSTRACT

Ne clusters (∼5000 atoms) were resonantly excited (2p→3s) by intense free electron laser (FEL) radiation at FERMI. Such multiply excited clusters can decay nonradiatively via energy exchange between at least two neighboring excited atoms. Benefiting from the precise tunability and narrow bandwidth of seeded FEL radiation, specific sites of the Ne clusters were probed. We found that the relaxation of cluster surface atoms proceeds via a sequence of interatomic or intermolecular Coulombic decay (ICD) processes while ICD of bulk atoms is additionally affected by the surrounding excited medium via inelastic electron scattering. For both cases, cluster excitations relax to atomic states prior to ICD, showing that this kind of ICD is rather slow (picosecond range). Controlling the average number of excitations per cluster via the FEL intensity allows a coarse tuning of the ICD rate.

17.
Phys Rev Lett ; 113(19): 193201, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25415905

ABSTRACT

Seeded free electron lasers theoretically have the intensity, tunability, and resolution required for multiphoton spectroscopy of atomic and molecular species. Using the seeded free electron laser FERMI and a novel detection scheme, we have revealed the two-photon excitation spectra of dipole-forbidden doubly excited states in helium. The spectral profiles of the lowest (-1,0)(+1) (1)S(e) and (0,1)(0) (1)D(e) resonances display energy shifts in the meV range that depend on the pulse intensity. The results are explained by an effective two-level model based on calculated Rabi frequencies and decay rates.

18.
Nat Commun ; 5: 3648, 2014 Apr 16.
Article in English | MEDLINE | ID: mdl-24736496

ABSTRACT

Ultrafast extreme ultraviolet and X-ray free-electron lasers are set to revolutionize many domains such as bio-photonics and materials science, in a manner similar to optical lasers over the past two decades. Although their number will grow steadily over the coming decade, their complete characterization remains an elusive goal. This represents a significant barrier to their wider adoption and hence to the full realization of their potential in modern photon sciences. Although a great deal of progress has been made on temporal characterization and wavefront measurements at ultrahigh extreme ultraviolet and X-ray intensities, only few, if any progress on accurately measuring other key parameters such as the state of polarization has emerged. Here we show that by combining ultra-short extreme ultraviolet free electron laser pulses from FERMI with near-infrared laser pulses, we can accurately measure the polarization state of a free electron laser beam in an elegant, non-invasive and straightforward manner using circular dichroism.

19.
Phys Rev Lett ; 112(7): 073401, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24579595

ABSTRACT

The ionization dynamics of He nanodroplets irradiated with intense femtosecond extreme ultraviolet pulses of up to 1013 W/cm2 power density have been investigated by photoelectron spectroscopy. Helium droplets were resonantly excited to atomiclike 2p states with a photon energy of 21.4 eV, below the ionization potential (Ip), and directly into the ionization continuum with 42.8 eV photons. While electron emission following direct ionization above Ip is well explained within a model based on a sequence of direct electron emission events, the resonant excitation provides evidence of a new, collective ionization mechanism involving many excited atomiclike 2p states. With increasing power density the direct photoline due to an interatomic Coulombic decay disappears. It indicates that ionization occurs due to energy exchange between at least three excited atoms proceeding on a femtosecond time scale. In agreement with recent theoretical work the novel ionization process is very efficient and it is expected to be important for many other systems.


Subject(s)
Helium/chemistry , Models, Chemical , Nanoparticles/chemistry , Electrons , Ions/chemistry , Photochemical Processes , Photoelectron Spectroscopy/methods , Ultraviolet Rays
20.
Phys Chem Chem Phys ; 16(10): 4764-70, 2014 Mar 14.
Article in English | MEDLINE | ID: mdl-24468913

ABSTRACT

We have performed a high-resolution synchrotron radiation photoelectron spectroscopy study of the initial growth stages of the ZnPd near-surface alloy on Pd(111), complemented by scanning tunnelling microscopy data. We show that the chemical environment for surfaces containing less than half of one monolayer of Zn is chemically distinct from subsequent layers. Surfaces where the deposition is performed at room temperature contain ZnPd islands surrounded by a substrate with dilute Zn substitutions. Annealing these surfaces drives the Zn towards the substrate top-layer, and favours the completion of the first 1 : 1 monolayer before the onset of growth in the next layer.

SELECTION OF CITATIONS
SEARCH DETAIL