Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Nanotechnol ; 18(10): 1175-1184, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37322142

ABSTRACT

Stretchable polymer semiconductors (PSCs) are essential for soft stretchable electronics. However, their environmental stability remains a longstanding concern. Here we report a surface-tethered stretchable molecular protecting layer to realize stretchable polymer electronics that are stable in direct contact with physiological fluids, containing water, ions and biofluids. This is achieved through the covalent functionalization of fluoroalkyl chains onto a stretchable PSC film surface to form densely packed nanostructures. The nanostructured fluorinated molecular protection layer (FMPL) improves the PSC operational stability over an extended period of 82 days and maintains its protection under mechanical deformation. We attribute the ability of FMPL to block water absorption and diffusion to its hydrophobicity and high fluorination surface density. The protection effect of the FMPL (~6 nm thickness) outperforms various micrometre-thick stretchable polymer encapsulants, leading to a stable PSC charge carrier mobility of ~1 cm2 V-1 s-1 in harsh environments such as in 85-90%-humidity air for 56 days or in water or artificial sweat for 42 days (as a benchmark, the unprotected PSC mobility degraded to 10-6 cm2 V-1 s-1 in the same period). The FMPL also improved the PSC stability against photo-oxidative degradation in air. Overall, we believe that our surface tethering of the nanostructured FMPL is a promising approach to achieve highly environmentally stable and stretchable polymer electronics.

2.
Nanoscale ; 15(24): 10244-10253, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37226987

ABSTRACT

Atomic force microscopy paired with infrared spectroscopy (AFM-IR) is a robust technique for investigating complex polymer blends and composites' nanoscale surface topography and chemical composition. In this work, we measured bilayer polymer films to study the effect of laser power, laser pulse frequency, and laser pulse width on the depth sensitivity of the technique. Unique bilayer polystyrene (PS) and polylactic acid (PLA) samples with various film thicknesses and blend ratios were prepared. The depth sensitivity characterized by the amplitude ratio of the resonance bands of PLA and PS was monitored as the thickness of the top barrier layer was incrementally increased from tens of nanometers to hundreds of nanometers. In addition, incrementally increasing the incident laser power resulted in greater depth sensitivity due to the enhanced thermal oscillations generated in the buried layer. In contrast, incrementally increasing the laser frequency increased the surface sensitivity, as indicated by a reduced PLA/PS AFM-IR signal ratio. Finally, the dependence of the depth sensitivity on the laser pulse width was observed. Consequently, by precisely controlling the laser energy, pulse frequency, and pulse width, one can finely control the depth sensitivity of the AFM-IR tool from 10 nm to 100 nm. Our work provides the unique capability to study buried polymeric structures without the need for tomography or destructive etching.


Subject(s)
Polyesters , Polymers , Microscopy, Atomic Force/methods , Polymers/chemistry , Spectrophotometry, Infrared/methods , Polyesters/chemistry , Radionuclide Imaging , Polystyrenes/chemistry
3.
Nanoscale ; 15(16): 7365-7373, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37038929

ABSTRACT

Atomic-force microscopy coupled with infrared spectroscopy (AFM-IR) deciphers surface morphology of thin-film polymer blends and composites by simultaneously mapping physical topography and chemical composition. However, acquiring quantitative phase and composition information from multi-component blends can be challenging using AFM-IR due to the possible overlapping infrared absorption bands between different species. Isotope labeling one of the blend components introduces a new type of bond (carbon-deuterium vibration) that can be targeted using AFM-IR and responds at wavelengths sufficiently shifted toward unoccupied regions (around 2200 cm-1). In this project, AFM-IR was used to probe the surface morphology and chemical composition of three polymer blends containing deuterated polystyrene; each blend is expected to exhibit various degrees of miscibility. AFM-IR results successfully demonstrated that deuterium labeling prevents infrared spectral overlap and enables the visualization of blend phases that could not normally be distinguished by other scanning probe techniques. The nanoscale domain composition was resolved by fast infrared spectrum analysis. Overall, we presented isotope labeling as a robust approach for circumventing obstacles preventing the quantitative analysis of multiphase systems by AFM-IR.

4.
Adv Mater ; 35(9): e2210208, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36515127

ABSTRACT

Access to multimaterial polymers with spatially localized properties and robust interfaces is anticipated to enable new capabilities in soft robotics, such as smooth actuation for advanced medical and manufacturing technologies. Here, orthogonal initiation is used to create interpenetrating polymer networks (IPNs) with spatial control over morphology and mechanical properties. Base catalyzes the formation of a stiff and strong polyurethane, while blue LEDs initiate the formation of a soft and elastic polyacrylate. IPN morphology is controlled by when the LED is turned "on", with large phase separation occurring for short time delays (≈1-2 min) and a mixed morphology for longer time delays (>5 min), which is supported by dynamic mechanical analysis, small angle X-ray scattering, and atomic force microscopy. Through tailoring morphology, tensile moduli and fracture toughness can be tuned across ≈1-2 orders of magnitude. Moreover, a simple spring model is used to explain the observed mechanical behavior. Photopatterning produces "multimorphic" materials, where morphology is spatially localized with fine precision (<100 µm), while maintaining a uniform chemical composition throughout to mitigate interfacial failure. As a final demonstration, the fabrication of hinges represents a possible use case for multimorphic materials in soft robotics.

5.
Macromol Rapid Commun ; 43(24): e2200533, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35943220

ABSTRACT

The morphological stability of an organic photovoltaic (OPV) device is greatly affected by the dynamics of donors and acceptors occurring near the device's operational temperature. These dynamics can be quantified by the glass transition temperature (Tg ) of conjugated polymers (CPs). Because flexible side chains possess much faster dynamics, the cleavage of the alkyl side chains will reduce chain dynamics, leading to a higher Tg . In this work, the Tg s for CPs are systematically studied with controlled side chain cleavage. Isothermal annealing of polythiophenes featuring thermally cleavable side chains at 140 °C, is found to remove more than 95% of alkyl side chains in 24 h, and raise the backbone Tg from 23 to 75 °C. Coarse grain molecular dynamics simulations are used to understand the Tg dependence on side chain cleavage. X-ray scattering indicates that the relative degree of crystallization remains constantduring isothermal annealing process. The effective conjugation length is not influenced by thermal cleavage; however, the density of chromophore is doubled after the complete removal of alkyl side chains. The combined effect of enhancing Tg and conserving crystalline structures during the thermal cleavage process can provide a pathway to improving the stability of optoelectronic properties in future OPV devices.


Subject(s)
Molecular Dynamics Simulation , Polymers , Polymers/chemistry , Transition Temperature , Temperature , Crystallization
6.
Nature ; 603(7902): 624-630, 2022 03.
Article in English | MEDLINE | ID: mdl-35322250

ABSTRACT

Next-generation light-emitting displays on skin should be soft, stretchable and bright1-7. Previously reported stretchable light-emitting devices were mostly based on inorganic nanomaterials, such as light-emitting capacitors, quantum dots or perovskites6-11. They either require high operating voltage or have limited stretchability and brightness, resolution or robustness under strain. On the other hand, intrinsically stretchable polymer materials hold the promise of good strain tolerance12,13. However, realizing high brightness remains a grand challenge for intrinsically stretchable light-emitting diodes. Here we report a material design strategy and fabrication processes to achieve stretchable all-polymer-based light-emitting diodes with high brightness (about 7,450 candela per square metre), current efficiency (about 5.3 candela per ampere) and stretchability (about 100 per cent strain). We fabricate stretchable all-polymer light-emitting diodes coloured red, green and blue, achieving both on-skin wireless powering and real-time displaying of pulse signals. This work signifies a considerable advancement towards high-performance stretchable displays.

7.
Nat Commun ; 12(1): 5701, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34588448

ABSTRACT

Next-generation wearable electronics require enhanced mechanical robustness and device complexity. Besides previously reported softness and stretchability, desired merits for practical use include elasticity, solvent resistance, facile patternability and high charge carrier mobility. Here, we show a molecular design concept that simultaneously achieves all these targeted properties in both polymeric semiconductors and dielectrics, without compromising electrical performance. This is enabled by covalently-embedded in-situ rubber matrix (iRUM) formation through good mixing of iRUM precursors with polymer electronic materials, and finely-controlled composite film morphology built on azide crosslinking chemistry which leverages different reactivities with C-H and C=C bonds. The high covalent crosslinking density results in both superior elasticity and solvent resistance. When applied in stretchable transistors, the iRUM-semiconductor film retained its mobility after stretching to 100% strain, and exhibited record-high mobility retention of 1 cm2 V-1 s-1 after 1000 stretching-releasing cycles at 50% strain. The cycling life was stably extended to 5000 cycles, five times longer than all reported semiconductors. Furthermore, we fabricated elastic transistors via consecutively photo-patterning of the dielectric and semiconducting layers, demonstrating the potential of solution-processed multilayer device manufacturing. The iRUM represents a molecule-level design approach towards robust skin-inspired electronics.

8.
Nat Commun ; 12(1): 5723, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34588457

ABSTRACT

Doping has been widely used to control the charge carrier concentration in organic semiconductors. However, in conjugated polymers, n-doping is often limited by the tradeoff between doping efficiency and charge carrier mobilities, since dopants often randomly distribute within polymers, leading to significant structural and energetic disorder. Here, we screen a large number of polymer building block combinations and explore the possibility of designing n-type conjugated polymers with good tolerance to dopant-induced disorder. We show that a carefully designed conjugated polymer with a single dominant planar backbone conformation, high torsional barrier at each dihedral angle, and zigzag backbone curvature is highly dopable and can tolerate dopant-induced disorder. With these features, the designed diketopyrrolopyrrole (DPP)-based polymer can be efficiently n-doped and exhibit high n-type electrical conductivities over 120 S cm-1, much higher than the reference polymers with similar chemical structures. This work provides a polymer design concept for highly dopable and highly conductive polymeric semiconductors.

9.
Angew Chem Int Ed Engl ; 60(15): 8189-8197, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33403799

ABSTRACT

Doping of polymeric semiconductors limits the miscibility between polymers and dopants. Although significant efforts have been devoted to enhancing miscibility through chemical modification, the electrical conductivities of n-doped polymeric semiconductors are usually below 10 S cm-1 . We report a different approach to overcome the miscibility issue by modulating the solution-state aggregates of conjugated polymers. We found that the solution-state aggregates of conjugated polymers not only changed with solvent and temperature but also changed with solution aging time. Modulating the solution-state polymer aggregates can directly influence their solid-state microstructures and miscibility with dopants. As a result, both high doping efficiency and high charge-carrier mobility were simultaneously obtained. The n-doped electrical conductivity of P(PzDPP-CT2) can be tuned up to 32.1 S cm-1 . This method can also be used to improve the doping efficiency of other polymer systems (e.g. N2200) with different aggregation tendencies and behaviors.

SELECTION OF CITATIONS
SEARCH DETAIL
...