Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
2.
Front Immunol ; 13: 998262, 2022.
Article in English | MEDLINE | ID: mdl-36353634

ABSTRACT

Background: The immune response to adenoviral COVID-19 vaccines is affected by the interval between doses. The optimal interval is unknown. Aim: We aim to explore in-silico the effect of the interval between vaccine administrations on immunogenicity and to analyze the contribution of pre-existing levels of antibodies, plasma cells, and memory B and T lymphocytes. Methods: We used a stochastic agent-based immune simulation platform to simulate two-dose and three-dose vaccination protocols with an adenoviral vaccine. We identified the model's parameters fitting anti-Spike antibody levels from individuals immunized with the COVID-19 vaccine AstraZeneca (ChAdOx1-S, Vaxzevria). We used several statistical methods, such as principal component analysis and binary classification, to analyze the correlation between pre-existing levels of antibodies, plasma cells, and memory B and T cells to the magnitude of the antibody response following a booster dose. Results and conclusions: We find that the magnitude of the antibody response to a booster depends on the number of pre-existing memory B cells, which, in turn, is highly correlated to the number of T helper cells and plasma cells, and the antibody titers. Pre-existing memory T cytotoxic cells and antibodies directly influence antigen availability hence limiting the magnitude of the immune response. The optimal immunogenicity of the third dose is achieved over a large time window, spanning from 6 to 16 months after the second dose. Interestingly, after any vaccine dose, individuals can be classified into two groups, sustainers and decayers, that differ in the kinetics of decline of their antibody titers due to differences in long-lived plasma cells. This suggests that the decayers may benefit from a tailored boosting schedule with a shorter interval to avoid the temporary loss of serological immunity.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Immunologic Memory , Immunization, Secondary , COVID-19/prevention & control , Vaccination , Adenoviridae/genetics
3.
Polymers (Basel) ; 14(9)2022 May 09.
Article in English | MEDLINE | ID: mdl-35567087

ABSTRACT

Within cell nuclei, several biophysical processes occur in order to allow the correct activities of the genome such as transcription and gene regulation. To quantitatively investigate such processes, polymer physics models have been developed to unveil the molecular mechanisms underlying genome functions. Among these, phase-separation plays a key role since it controls gene activity and shapes chromatin spatial structure. In this paper, we review some recent experimental and theoretical progress in the field and show that polymer physics in synergy with numerical simulations can be helpful for several purposes, including the study of molecular condensates, gene-enhancer dynamics, and the three-dimensional reconstruction of real genomic regions.

4.
FEBS J ; 289(5): 1180-1190, 2022 03.
Article in English | MEDLINE | ID: mdl-33583147

ABSTRACT

In higher eukaryotes, chromosomes have a complex three-dimensional (3D) conformation in the cell nucleus serving vital functional purposes, yet their folding principles remain poorly understood at the single-molecule level. Here, we summarize recent approaches from polymer physics to comprehend the physical mechanisms underlying chromatin architecture. In particular, we focus on two models that have been supported by recent, growing experimental evidence, the Loop Extrusion model and the Strings&Binders phase separation model. We discuss their key ingredients, how they compare to experimental data and some insight they provide on chromatin architecture and gene regulation. Progress in that research field are opening the possibility to predict how genomic mutations alter the network of contacts between genes and their regulators and how that is linked to genetic diseases, such as congenital disorders and cancer.


Subject(s)
Chromatin/chemistry , Biopolymers/chemistry , Gene Expression Regulation , Models, Biological , Mutation
6.
Biochem Soc Trans ; 49(4): 1675-1684, 2021 08 27.
Article in English | MEDLINE | ID: mdl-34282837

ABSTRACT

The development of new experimental technologies is opening the way to a deeper investigation of the three-dimensional organization of chromosomes inside the cell nucleus. Genome architecture is linked to vital functional purposes, yet a full comprehension of the mechanisms behind DNA folding is still far from being accomplished. Theoretical approaches based on polymer physics have been employed to understand the complexity of chromatin architecture data and to unveil the basic mechanisms shaping its structure. Here, we review some recent advances in the field to discuss how Polymer Physics, combined with numerical Molecular Dynamics simulation and Machine Learning based inference, can capture important aspects of genome organization, including the description of tissue-specific structural rearrangements, the detection of novel, regulatory-linked architectural elements and the structural variability of chromatin at the single-cell level.


Subject(s)
Chromatin/chemistry , Models, Biological , Polymers/chemistry , Genome , Machine Learning , Molecular Dynamics Simulation , Single-Cell Analysis/methods
7.
Nat Methods ; 18(5): 482-490, 2021 05.
Article in English | MEDLINE | ID: mdl-33963348

ABSTRACT

Hi-C, split-pool recognition of interactions by tag extension (SPRITE) and genome architecture mapping (GAM) are powerful technologies utilized to probe chromatin interactions genome wide, but how faithfully they capture three-dimensional (3D) contacts and how they perform relative to each other is unclear, as no benchmark exists. Here, we compare these methods in silico in a simplified, yet controlled, framework against known 3D structures of polymer models of murine and human loci, which can recapitulate Hi-C, GAM and SPRITE experiments and multiplexed fluorescence in situ hybridization (FISH) single-molecule conformations. We find that in silico Hi-C, GAM and SPRITE bulk data are faithful to the reference 3D structures whereas single-cell data reflect strong variability among single molecules. The minimal number of cells required in replicate experiments to return statistically similar contacts is different across the technologies, being lowest in SPRITE and highest in GAM under the same conditions. Noise-to-signal levels follow an inverse power law with detection efficiency and grow with genomic distance differently among the three methods, being lowest in GAM for genomic separations >1 Mb.


Subject(s)
Chromatin/chemistry , Models, Chemical , Polymers/chemistry , Animals , Chromosome Mapping , Computer Simulation , Humans , Mice , Single Molecule Imaging , Single-Cell Analysis
8.
Aging Clin Exp Res ; 33(5): 1383-1387, 2021 May.
Article in English | MEDLINE | ID: mdl-31758499

ABSTRACT

Immunization against ß-amyloid (Aß) is pursued as a possible strategy for the prevention of Alzheimer's disease (AD). In clinical trials, Aß 1-42 proved poorly immunogenic and caused severe adverse effects; therefore, safer and more immunogenic candidate vaccines are needed. Multimeric protein (1-11)E2 is able to induce an antibody response to Aß, immunological memory, and IL-4 production, with no concomitant anti-Aß T cell response. Antisera recognize Aß oligomers, protofibrils, and fibrils. In this study, we evaluated the effect of prophylactic immunization with three doses of (1-11)E2 in alum in the 3xTg mouse model of AD. Immunization with (1-11)E2 efficiently induced anti-Aß antibodies, but afforded no protection against Aß accumulation and neuroinflammation. The identification of the features of the anti-Aß immune response that correlate with the ability to prevent Aß accumulation remains an open problem that deserves further investigation.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Alum Compounds , Amyloid beta-Peptides/metabolism , Animals , Antibody Formation , Brain/metabolism , Disease Models, Animal , Mice , Mice, Inbred C57BL , Microglia/metabolism , Peptide Fragments , Vaccination
9.
Biology (Basel) ; 9(12)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33260956

ABSTRACT

Vaccination relies on the phenomenon of immunity, a long-term change in the immunological response to subsequent encounters with the same pathogen that occurs after the recovery from some infectious diseases. However, vaccination is a strategy that can, in principle, be applied also to non-infectious diseases, such as cancer or neurodegenerative diseases, if an adaptive immune response can prevent the onset of the disease or modify its course. Immunization against ß-amyloid has been explored as a vaccination strategy for Alzheimer's disease for over 20 years. No vaccine has been licensed so far, and immunotherapy has come under considerable criticism following the negative results of several phase III clinical trials. In this narrative review, we illustrate the working hypothesis behind immunization against ß-amyloid as a vaccination strategy for Alzheimer's disease, and the outcome of the active immunization strategies that have been tested in humans. On the basis of the lessons learned from preclinical and clinical research, we discuss roadblocks and current perspectives in this challenging enterprise in translational immunology.

10.
Microorganisms ; 8(4)2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32295280

ABSTRACT

Immunological memory can be defined as the ability to mount a response of greater magnitude and with faster kinetics upon re-encounter of the same antigen. We have previously reported that a booster dose of a protein antigen given 15 days after the first dose interferes with the development of memory, i.e., with the ability to mount an epitope-specific IgG response of greater magnitude upon re-encounter of the same antigen. We named the time-window during which memory is vulnerable to disruption a "consolidation phase in immunological memory", by analogy with the memory consolidation processes that occur in the nervous system to stabilize memory traces. In this study, we set out to establish if a similar memory consolidation phase occurs in the IgG response to a B cell epitope displayed on a filamentous bacteriophage. To this end, we have analyzed the time-course of anti-ß-amyloid IgG titers in mice immunized with prototype Alzheimer's Disease vaccine fdAD(2-6), which consists of a fd phage that displays the B epitope AEFRH of ß -amyloid at the N-terminus of the Major Capsid Protein. A booster dose of phage fdAD(2-6) given 15 days after priming significantly reduced the ratio between the magnitude of the secondary and primary IgG response to ß-amyloid. This analysis confirms, in a phage vaccine, a consolidation phase in immunological memory, occurring two weeks after priming.

11.
Cell Rep ; 30(7): 2125-2135.e5, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32075757

ABSTRACT

We investigate the three-dimensional (3D) conformations of the α-globin locus at the single-allele level in murine embryonic stem cells (ESCs) and erythroid cells, combining polymer physics models and high-resolution Capture-C data. Model predictions are validated against independent fluorescence in situ hybridization (FISH) data measuring pairwise distances, and Tri-C data identifying three-way contacts. The architecture is rearranged during the transition from ESCs to erythroid cells, associated with the activation of the globin genes. We find that in ESCs, the spatial organization conforms to a highly intermingled 3D structure involving non-specific contacts, whereas in erythroid cells the α-globin genes and their enhancers form a self-contained domain, arranged in a folded hairpin conformation, separated from intermingling flanking regions by a thermodynamic mechanism of micro-phase separation. The flanking regions are rich in convergent CTCF sites, which only marginally participate in the erythroid-specific gene-enhancer contacts, suggesting that beyond the interaction of CTCF sites, multiple molecular mechanisms cooperate to form an interacting domain.


Subject(s)
Erythroid Cells/metabolism , Inverted Repeat Sequences/genetics , alpha-Globins/genetics , Animals , Humans , Mice
12.
Methods ; 181-182: 70-79, 2020 10 01.
Article in English | MEDLINE | ID: mdl-31604121

ABSTRACT

The combination of modelling and experimental advances can provide deep insights for understanding chromatin 3D organization and ultimately its underlying mechanisms. In particular, models of polymer physics can help comprehend the complexity of genomic contact maps, as those emerging from technologies such as Hi-C, GAM or SPRITE. Here we discuss a method to reconstruct 3D structures from Genome Architecture Mapping (GAM) data, based on PRISMR, a computational approach introduced to find the minimal polymer model best describing Hi-C input data from only polymer physics. After recapitulating the PRISMR procedure, we describe how we extended it for treating GAM data. We successfully test the method on a 6 Mb region around the Sox9 gene and, at a lower resolution, on the whole chromosome 7 in mouse embryonic stem cells. The PRISMR derived 3D structures from GAM co-segregation data are finally validated against independent Hi-C contact maps. The method results to be versatile and robust, hinting that it can be similarly applied to different experimental data, such as SPRITE or microscopy distance data.


Subject(s)
Chromosome Mapping/methods , Chromosomes/chemistry , Models, Chemical , Physics/methods , Animals , Chromosomes/genetics , Genetic Loci , Genome , Mice , Molecular Conformation , Mouse Embryonic Stem Cells , Polymers/chemistry , SOX9 Transcription Factor/genetics
13.
Pharmaceutics ; 11(9)2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31480551

ABSTRACT

The pharmaceutical use of bacteriophages as safe and inexpensive therapeutic tools is collecting renewed interest. The use of lytic phages to fight antibiotic-resistant bacterial strains is pursued in academic and industrial projects and is the object of several clinical trials. On the other hand, filamentous bacteriophages used for the phage display technology can also have diagnostic and therapeutic applications. Filamentous bacteriophages are nature-made nanoparticles useful for their size, the capability to enter blood vessels, and the capacity of high-density antigen expression. In the last decades, our laboratory focused its efforts in the study of antigen delivery strategies based on the filamentous bacteriophage 'fd', able to trigger all arms of the immune response, with particular emphasis on the ability of the MHC class I restricted antigenic determinants displayed on phages to induce strong and protective cytotoxic responses. We showed that fd bacteriophages, engineered to target mouse dendritic cells (DCs), activate innate and adaptive responses without the need of exogenous adjuvants, and more recently, we described the display of immunologically active lipids. In this review, we will provide an overview of the reported applications of the bacteriophage carriers and describe the advantages of exploiting this technology for delivery strategies.

14.
Cell Rep ; 28(6): 1574-1583.e4, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31390570

ABSTRACT

Complex architectural rearrangements are associated to the control of the HoxD genes in different cell types; yet, how they are implemented in single cells remains unknown. By use of polymer models, we dissect the locus 3D structure at the single DNA molecule level in mouse embryonic stem and cortical neuronal cells, as the HoxD cluster changes from a poised to a silent state. Our model describes published Hi-C, 3-way 4C, and FISH data with high accuracy and is validated against independent 4C data on the Nsi-SB 0.5-Mb duplication and on triple contacts. It reveals the mode of action of compartmentalization on the regulation of the HoxD genes that have gene- and cell-type-specific multi-way interactions with their regulatory elements and high cell-to-cell variability. It shows that TADs and higher-order 3D structures, such as metaTADs, associate with distinct combinations of epigenetic factors, including but not limited to CCCTC-binding factor (CTCF) and histone marks.


Subject(s)
Embryonic Stem Cells/metabolism , Neurons/metabolism , Animals , Mice , Molecular Conformation
15.
Front Immunol ; 10: 508, 2019.
Article in English | MEDLINE | ID: mdl-30941140

ABSTRACT

Long lasting antibody responses and immunological memory are the desired outcomes of vaccination. In general, multiple vaccine doses result in enhanced immune responses, a notable exception being booster-induced hyporesponsiveness, which has been observed with polysaccharide and glycoconjugate vaccines. In this study, we analyzed the effect of early booster doses of multimeric protein vaccine (1-11)E2 on recall memory to B epitope 1-11 of ß-amyloid. Mice immunized with a single dose of (1-11)E2 stochastically display, when immunized with a recall dose 9 months later, either memory, i.e., an enhanced response to epitope 1-11, or hyporesponsiveness, i.e., a reduced response. Memory is the most common outcome, achieved by 80% of mice. We observed that a booster dose of vaccine (1-11)E2 at day 15 significantly reduced the ratio between the magnitude of the secondary and primary response, causing an increase of hyporesponsive mice. This booster-dependent disruption of recall memory only occurred in a limited time window: a booster dose at day 21 had no significant effect on the ratio between the secondary and primary response magnitude. Thus, this study identifies a consolidation phase in immunological memory, that is a time window during which the formation of memory is vulnerable, and a disrupting stimulus reduces the probability that memory is achieved.


Subject(s)
Immunologic Memory/immunology , Animals , Antibody Formation/immunology , Female , Immunization, Secondary/methods , Mice , Mice, Inbred BALB C , Vaccination/methods , Vaccines, Conjugate/immunology
16.
Int J Mol Sci ; 19(4)2018 Apr 19.
Article in English | MEDLINE | ID: mdl-29671786

ABSTRACT

Since the identification of the Human Immunodeficiency Virus type 1 (HIV-1) as the etiologic agent of AIDS (Acquired Immunodeficiency Syndrome), many efforts have been made to stop the AIDS pandemic. A major success of medical research has been the development of the highly active antiretroviral therapy and its availability to an increasing number of people worldwide, with a considerable effect on survival. However, a safe and effective vaccine able to prevent and eradicate the HIV pandemic is still lacking. Clinical trials and preclinical proof-of-concept studies in nonhuman primate (NHP) models have provided insights into potential correlates of protection against the HIV-1 infection, which include broadly neutralizing antibodies (bnAbs), non-neutralizing antibodies targeting the variable loops 1 and 2 (V1V2) regions of the HIV-1 envelope (Env), polyfunctional antibody, and Env-specific T-cell responses. In this review, we provide a brief overview of different HIV-1 vaccine approaches and discuss the current understanding of the cellular and humoral correlates of HIV-1 immunity.


Subject(s)
AIDS Vaccines/immunology , AIDS Vaccines/therapeutic use , HIV Infections/prevention & control , HIV-1/immunology , Animals , Antibodies, Neutralizing/immunology , Clinical Trials as Topic , HIV Antibodies/immunology , HIV Infections/immunology , Humans , env Gene Products, Human Immunodeficiency Virus/immunology
17.
PLoS One ; 12(11): e0188201, 2017.
Article in English | MEDLINE | ID: mdl-29141034

ABSTRACT

New Hi-C technologies have revealed that chromosomes have a complex network of spatial contacts in the cell nucleus of higher organisms, whose organisation is only partially understood. Here, we investigate the structure of such a network in human GM12878 cells, to derive a large scale picture of nuclear architecture. We find that the intensity of intra-chromosomal interactions is power-law distributed. Inter-chromosomal interactions are two orders of magnitude weaker and exponentially distributed, yet they are not randomly arranged along the genomic sequence. Intra-chromosomal contacts broadly occur between epigenomically homologous regions, whereas inter-chromosomal contacts are especially associated with regions rich in highly expressed genes. Overall, genomic contacts in the nucleus appear to be structured as a network of networks where a set of strongly individual chromosomal units, as envisaged in the 'chromosomal territory' scenario derived from microscopy, interact with each other via on average weaker, yet far from random and functionally important interactions.


Subject(s)
Chromosomes, Human , Cell Nucleus/genetics , Genome, Human , Humans
18.
Front Neurosci ; 11: 559, 2017.
Article in English | MEDLINE | ID: mdl-29066944

ABSTRACT

In the last decade, the developments of novel technologies, such as Hi-C or GAM methods, allowed to discover that chromosomes in the nucleus of mammalian cells have a complex spatial organization, encompassing the functional contacts between genes and regulators. In this work, we review recent progresses in chromosome modeling based on polymer physics to understand chromatin structure and folding mechanisms. As an example, we derive in mouse embryonic stem cells the full 3D structure of the Bmp7 locus, a genomic region that plays a key role in osteoblastic differentiation. Next, as an application to Neuroscience, we present the first 3D model for the mouse orthologoue of the Williams-Beuren syndrome 7q11.23 human locus. Deletions and duplications of the 7q11.23 region generate neurodevelopmental disorders with multi-system involvement and variable expressivity, and with autism. Understanding the impact of such mutations on the rewiring of the interactions of genes and regulators could be a new key to make sense of their related diseases, with potential applications in biomedicine.

19.
BMC Microbiol ; 16(1): 152, 2016 07 16.
Article in English | MEDLINE | ID: mdl-27421762

ABSTRACT

BACKGROUND: The E2 multimeric scaffold represents a powerful delivery system able to elicit robust humoral and cellular immune responses upon systemic administrations. Here recombinant E2 scaffold displaying the third variable loop of HIV-1 Envelope gp120 glycoprotein was administered via mucosa, and the mucosal and systemic immune responses were analysed. To gain further insights into the molecular mechanisms that orchestrate the immune response upon E2 vaccination, we analysed the transcriptome profile of dendritic cells (DCs) exposed to the E2 scaffold with the aim to define a specific gene expression signature for E2-primed immune responses. RESULTS: The in vivo immunogenicity and the potential of E2 scaffold as a mucosal vaccine candidate were investigated in BALB/c mice vaccinated via the intranasal route. Fecal and systemic antigen-specific IgA antibodies, cytokine-producing CD4(+) and CD8(+) cells were induced assessing the immunogenicity of E2 particles via intranasal administration. The cytokine analysis identified a mixed T-helper cell response, while the systemic antibody response showed a prevalence of IgG1 isotype indicative of a polarized Th2-type immune response. RNA-Sequencing analysis revealed that E2 scaffold up-regulates in DCs transcriptional regulators of the Th2-polarizing cell response, defining a type 2 DC transcriptomic signature. CONCLUSIONS: The current study provides experimental evidence to the possible application of E2 scaffold as antigen delivery system for mucosal immunization and taking advantages of genome-wide approach dissects the type of response induced by E2 particles.


Subject(s)
AIDS Vaccines/immunology , Dendritic Cells/immunology , HIV Envelope Protein gp120/immunology , Vaccines/administration & dosage , Vaccines/immunology , AIDS Vaccines/administration & dosage , AIDS Vaccines/chemistry , Adjuvants, Immunologic/administration & dosage , Administration, Intranasal , Animals , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes , Cytokines/metabolism , Female , Immunity, Mucosal/immunology , Immunogenicity, Vaccine , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Mice , Mice, Inbred BALB C , Transcriptome , Vaccines/chemistry
20.
PLoS One ; 9(7): e101474, 2014.
Article in English | MEDLINE | ID: mdl-24983378

ABSTRACT

The development of active immunotherapy for Alzheimer's disease (AD) requires the identification of immunogens that can ensure a high titer antibody response toward Aß, while minimizing the risks of adverse reactions. Multimeric protein (1-11)E2 induces a robust and persistent antibody response to Aß in mice, when formulated in Freund's adjuvant. The goal of this translational study was to evaluate the immunogenicity of (1-11)E2 formulated in alum (Alhydrogel 2%), or in a squalene oil-in-water emulsion (AddaVax), or without adjuvant. A IgG1-skewed isotype distribution was observed for the anti-Aß antibodies generated in mice immunized with either the non-adjuvanted or the adjuvanted vaccine, indicating that (1-11)E2 induces a Th2-like response in all tested conditions. Both Alhydrogel 2% and AddaVax enhanced the titer and avidity of the anti-Aß response elicited by (1-11)E2. We conclude that (1-11)E2 is a promising candidate for anti-Aß immunization protocols that include alum or squalene-oil-in-water emulsion, or no adjuvant.


Subject(s)
Alum Compounds/pharmacology , Alzheimer Disease , Amyloid beta-Peptides , Antigens , Immunoglobulin G/immunology , Multiprotein Complexes , Peptide Fragments , Polysorbates/pharmacology , Squalene/pharmacology , Alzheimer Disease/genetics , Alzheimer Disease/immunology , Alzheimer Disease/therapy , Amyloid beta-Peptides/pharmacology , Animals , Antigens/pharmacology , Emulsions/pharmacology , Female , Mice , Mice, Transgenic , Multiprotein Complexes/pharmacology , Peptide Fragments/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...