Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
Cell Physiol Biochem ; 31(4-5): 565-78, 2013.
Article in English | MEDLINE | ID: mdl-23615001

ABSTRACT

BACKGROUND/AIMS: In humans and rodents, organic anion transporter 3 (Oat3) is highly expressed on the basolateral membrane of renal proximal tubules and mediates the secretion of exogenous and endogenous anions. Regulation of Oat3 expression and function has been observed in both expression system and intact renal epithelia. However, information on the local membrane environment of Oat3 and its role is limited. Lipid raft domains (LRD; cholesterol-rich domains of the plasma membrane) play important roles in membrane protein expression, function and targeting. In the present study, we have examined the role of LRD-rich membranes and their associated cytoskeletal proteins on Oat3 expression and function. METHODS: LRD-rich membranes were isolated from rat renal cortical tissues and from HEK-293 cells stably expressing human OAT3 (hOAT3) by differential centrifugation with triton X-100 extraction. Western blots were subsequently analyzed to determine protein expression. In addition, the effect of disruption of LRD-rich membranes was examined on functional Oat3 mediated estrone sulfate (ES) transport in rat renal cortical slices. Cytoskeleton disruptors were investigated in both hOAT3 expressing HEK-293 cells and rat renal cortical slices. RESULTS: Lipid-enriched membranes from rat renal cortical tissues and hOAT3-expressing HEK-293 cells showed co-expression of rOat3/hOAT3 and several lipid raft-associated proteins, specifically caveolin 1 (Cav1), ß-actin and myosin. Moreover, immunohistochemistry in hOAT3-expressing HEK-293 cells demonstrated that these LRD-rich proteins co-localized with hOAT3. Potassium iodide (KI), an inhibitor of protein-cytoskeletal interaction, effectively detached cytoskeleton proteins and hOAT3 from plasma membrane, leading to redistribution of hOAT3 into non-LRD-rich compartments. In addition, inhibition of cytoskeleton integrity and membrane trafficking processes significantly reduced ES uptake mediated by both human and rat Oat3. Cholesterol depletion by methyl-ß-cyclodextrin (MßCD) also led to a dose dependent reduction Oat3 expression and ES transport by rat renal cortical slices. Moreover, the up-regulation of rOat3-mediated transport seen following insulin stimulation was completely prevented by MßCD. CONCLUSION: We have demonstrated that renal Oat3 resides in LRD-rich membranes in proximity to cytoskeletal and signaling proteins. Disruption of LRD-rich membranes by cholesterol-binding agents or protein trafficking inhibitors altered Oat3 expression and regulation. These findings indicate that the integrity of LRD-rich membranes and their associated proteins are essential for Oat3 expression and function.


Subject(s)
Organic Anion Transporters, Sodium-Independent/metabolism , Actins/metabolism , Animals , Biological Transport/drug effects , Caveolin 1/metabolism , Cytoskeleton/metabolism , Estrone/analogs & derivatives , Estrone/metabolism , HEK293 Cells , Humans , Insulin/pharmacology , Kidney Tubules, Proximal/cytology , Male , Membrane Microdomains/drug effects , Myosins/metabolism , Organic Anion Transporters, Sodium-Independent/genetics , Rats , Rats, Sprague-Dawley , Up-Regulation/drug effects , beta-Cyclodextrins/pharmacology
2.
Toxicol Sci ; 118(2): 368-79, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20843897

ABSTRACT

In National Toxicology Program 2-year studies, hexavalent chromium [Cr(VI)] administered in drinking water was clearly carcinogenic in male and female rats and mice, resulting in small intestine epithelial neoplasms in mice at a dose equivalent to or within an order of magnitude of human doses that could result from consumption of chromium-contaminated drinking water, assuming that dose scales by body weight(3/4) (body weight raised to the 3/4 power). In contrast, exposure to trivalent chromium [Cr(III)] at much higher concentrations may have been carcinogenic in male rats but was not carcinogenic in mice or female rats. As part of these studies, total chromium was measured in tissues and excreta of additional groups of male rats and female mice. These data were used to infer the uptake and distribution of Cr(VI) because Cr(VI) is reduced to Cr(III) in vivo, and no methods are available to speciate tissue chromium. Comparable external doses resulted in much higher tissue chromium concentrations following exposure to Cr(VI) compared with Cr(III), indicating that a portion of the Cr(VI) escaped gastric reduction and was distributed systemically. Linear or supralinear dose responses of total chromium in tissues were observed following exposure to Cr(VI), indicating that these exposures did not saturate gastric reduction capacity. When Cr(VI) exposure was normalized to ingested dose, chromium concentrations in the liver and glandular stomach were higher in mice, whereas kidney concentrations were higher in rats. In vitro studies demonstrated that Cr(VI), but not Cr(III), is a substrate of the sodium/sulfate cotransporter, providing a partial explanation for the greater absorption of Cr(VI).


Subject(s)
Carcinogens, Environmental/pharmacokinetics , Chromates/pharmacokinetics , Picolinic Acids/pharmacokinetics , Administration, Oral , Animals , Body Burden , Chromium/analysis , Chromium/metabolism , Drinking , Female , Gastric Mucosa/metabolism , Liver/chemistry , Liver/metabolism , Male , Mice , Mice, Inbred Strains , Rats , Rats, Inbred F344 , Spectrophotometry, Atomic , Stomach/chemistry , Tissue Distribution
3.
J Biol Chem ; 284(5): 2672-2679, 2009 Jan 30.
Article in English | MEDLINE | ID: mdl-19028678

ABSTRACT

Organic anion transporters (OATs) play a pivotal role in the clearance of small organic anions by the kidney, yet little is known about how their activity is regulated. A yeast two-hybrid assay was used to identify putative OAT3-associated proteins in the kidney. Atypical protein kinase Czeta (PKCzeta) was shown to bind to OAT3. Binding was confirmed in immunoprecipitation assays. The OAT3/PKCzeta interaction was investigated in rodent renal cortical slices from fasted animals. Insulin, an upstream activator of PKCzeta, increased both OAT3-mediated uptake of estrone sulfate (ES) and PKCzeta activity. Both effects were abolished by a PKCzeta-specific pseudosubstrate inhibitor. Increased ES transport was not observed in renal slices from OAT3-null mice. Transport of the shared OAT1/OAT3 substrate, rho-aminohippurate, behaved similarly, except that stimulation was reduced, not abolished, in the OAT3-null mice. This suggested that OAT1 activity was also modified by PKCzeta, subsequently confirmed using an OAT1-specific substrate, adefovir. Inhibition of PKCzeta also blocked the increase in ES uptake seen in response to epidermal growth factor and to activation of protein kinase A. Thus, PKCzeta acted downstream of the epidermal growth factor to protein kinase A signaling pathway. Activation of transport was accompanied by an increase in V(max) and was blocked by microtubule disruption, indicating that activation may result from trafficking of OAT3 into the plasma membrane. These data demonstrate that PKCzeta activation up-regulates OAT1 and OAT3 function, and that protein-protein interactions play a central role controlling these two important renal drug transporters.


Subject(s)
Organic Anion Transport Protein 1/physiology , Organic Anion Transporters, Sodium-Independent/physiology , Protein Kinase C/metabolism , Animals , Biological Transport , Enzyme Activation , In Vitro Techniques , Mice , Mice, Knockout , Organic Anion Transport Protein 1/genetics , Organic Anion Transporters, Sodium-Independent/genetics , Rats , Rats, Sprague-Dawley
4.
Drug Metab Dispos ; 36(1): 198-202, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17954525

ABSTRACT

Freshly isolated hepatocytes are widely accepted as the "gold standard" for providing reliable data on drug uptake across the sinusoidal (basolateral) membrane. However, the suitability of freshly isolated hepatocytes in suspension to assess efflux by canalicular (apical) proteins or predict biliary excretion in the intact organ is unclear. After collagenase digestion, hepatocytes rapidly lose polarity, but localization of canalicular transport proteins in the first few hours after isolation has not been well characterized. In this study, immunostaining and confocal microscopy have provided, for the first time, a detailed examination of canalicular transport protein localization in freshly isolated rat hepatocytes fixed within 1 h of isolation and in cells cultured for 1 h. Organic anion transporting polypeptide 1a1 (Oatp1a1) was expressed in all hepatocytes and distributed evenly across the basolateral membrane; there was no evidence for colocalization of Oatp1a1 with P-glycoprotein (P-gp) or multidrug resistance-associated protein 2 (Mrp2). In contrast, P-gp and Mrp2 expression was lower than Oatp1a1 and confined to junctions between adjacent cells, intracellular compartments, and "legacy" network structures at or near the cell surface. P-gp and Mrp2 staining was more predominant in regions adjacent to former canalicular spaces, identified by zonula occludens-1 staining. Functional analysis of rat hepatocytes cultured for 1 h demonstrated that the fluorescent anion and Mrp2 substrate, 5-(and-6)-carboxy-2',7'-dichlorofluorescein (CDF), accumulated in cellular compartments; compartmental accumulation of CDF was sensitive to (E)-3-[[[3-[2-(7-chloro-2-quinolinyl)ethenyl]phenyl]-[[3-dimethylamino)-3-oxopropyl]thio]methyl]thio]-propanoic acid (MK571, Mrp inhibitor) and was not observed in hepatocytes isolated from Mrp2-deficient rats. Drug efflux from freshly isolated hepatocytes as an estimate of apical efflux/biliary excretion would give an inaccurate assessment of true apical elimination and, as such, should not be used to make in vivo extrapolations.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis , ATP-Binding Cassette Transporters/biosynthesis , Hepatocytes/metabolism , Animals , Biological Transport , Cells, Cultured , Fluorescent Dyes , Male , Microscopy, Confocal , Rats , Rats, Wistar
5.
J Biol Chem ; 281(49): 38071-9, 2006 Dec 08.
Article in English | MEDLINE | ID: mdl-17038320

ABSTRACT

Organic anion transporters (OATs) play a critical role in the handling of endogenous and exogenous organic anions by excretory and barrier tissues. Little is known about the OAT three-dimensional structure or substrate/protein interactions involved in transport. In this investigation, a theoretical three-dimensional model was generated for human OAT1 (hOAT1) based on fold recognition to the crystal structure of the glycerol 3-phosphate transporter (GlpT) from Escherichia coli. GlpT and hOAT1 share several sequence motifs as major facilitator superfamily members. The structural hOAT1 model shows that helices 5, 7, 8, 10, and 11 surround an electronegative putative active site ( approximately 830A(3)). The site opens to the cytoplasm and is surrounded by three residues not previously examined for function (Tyr(230) (domain 5) and Lys(431) and Phe(438) (domain 10)). Effects of these residues on p-aminohippurate (PAH) and cidofovir transport were assessed by point mutations in a Xenopus oocyte expression system. Membrane protein expression was severely limited for the Y230A mutant. For the K431A and F438A mutants, [(3)H]PAH uptake was less than 30% of wild-type hOAT1 uptake after protein expression correction. Reduced V(max) values for the F438A mutant confirmed lower protein expression. In addition, the F438A mutant exhibited an increased affinity for cidofovir but was not significantly different for PAH. Differences in handling of PAH and cidofovir were also observed for the Y230F mutant. Little uptake was determined for cidofovir, whereas PAH uptake was similar to wild-type hOAT1. Therefore, the hOAT1 structural model has identified two new residues, Tyr(230) and Phe(438), which are important for substrate/protein interactions.


Subject(s)
Organic Anion Transport Protein 1/chemistry , Amino Acid Sequence , Amino Acid Substitution , Amino Acids, Aromatic/chemistry , Animals , Base Sequence , Binding Sites/genetics , DNA Primers/genetics , Female , Humans , In Vitro Techniques , Kinetics , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Oocytes/metabolism , Organic Anion Transport Protein 1/genetics , Organic Anion Transport Protein 1/metabolism , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Static Electricity , Xenopus laevis
6.
Am J Physiol Regul Integr Comp Physiol ; 291(6): R1773-80, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16857889

ABSTRACT

The flounder renal organic anion transporter (fOat) has substantial sequence homology to mammalian basolateral organic anion transporter orthologs (OAT1/Oat1 and OAT3/Oat3), suggesting that fOat may have functional properties of both mammalian forms. We therefore compared uptake of various substrates by rat Oat1 and Oat3 and human OAT1 and OAT3 with the fOat clone expressed in Xenopus oocytes. These data confirm that estrone sulfate is an excellent substrate for mammalian OAT3/Oat3 transporters but not for OAT1/Oat1 transporters. In contrast, 2,4-dichlorophenoxyacetic acid and adefovir are better transported by mammalian OAT1/Oat1 than by the OAT3/Oat3 clones. All three substrates were well transported by fOat-expressing Xenopus oocytes. fOat K(m) values were comparable to those obtained for mammalian OAT/Oat1/3 clones. We also characterized the ability of these substrates to inhibit uptake of the fluorescent substrate fluorescein in intact teleost proximal tubules isolated from the winter flounder (Pseudopleuronectes americanus) and killifish (Fundulus heteroclitus). The rank order of the IC(50) values for inhibition of cellular fluorescein accumulation was similar to that for the K(m) values obtained in fOat-expressing oocytes, suggesting that fOat may be the primary teleost renal basolateral Oat. Assessment of the zebrafish (Danio rerio) genome indicated the presence of a single Oat (zfOat) with similarity to both mammalian OAT1/Oat1 and OAT3/Oat3. The puffer fish (Takifugu rubripes) also has an Oat (pfOat) similar to mammalian OAT1/Oat1 and OAT3/Oat3 members. Furthermore, phylogenetic analyses argue that the teleost Oat1/3-like genes diverged from a common ancestral gene in advance of the divergence of the mammalian OAT1/Oat1, OAT3/Oat3, and, possibly, Oat6 genes.


Subject(s)
Flounder/genetics , Flounder/metabolism , Organic Anion Transporters, Sodium-Independent/genetics , Organic Anion Transporters, Sodium-Independent/metabolism , Amino Acid Sequence , Animals , Evolution, Molecular , Humans , Molecular Sequence Data , Organic Anion Transport Protein 1/chemistry , Organic Anion Transport Protein 1/genetics , Organic Anion Transport Protein 1/metabolism , Organic Anion Transporters, Sodium-Independent/chemistry , Sequence Homology, Amino Acid , Species Specificity , Substrate Specificity
7.
J Pharmacol Exp Ther ; 316(1): 349-55, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16195420

ABSTRACT

Drugs and xenobiotics bind to plasma proteins with varying degrees of affinity, and the amount of binding has a direct effect on free drug concentration and subsequent pharmacokinetics. Multiple active and facilitative transport systems regulate the excretion of anionic compounds from the blood in excretory and barrier tissues. Assumptions are made about in vivo substrate affinity and route of elimination based on data from plasma protein-free in vitro assays, particularly following expression of cloned transporters. Ochratoxin A (OTA), a fungal mycotoxin, is a high-affinity substrate for several renal secretory organic anion transporters (OATs), and literature suggests that this elimination pathway is the route of entry leading to proximal tubule-targeted toxicity. However, OTA is known to bind to several plasma proteins with a high affinity, particularly serum albumin, which may impact elimination. In this study, we have systematically examined the handling of OTA and other organic anions, estrone sulfate (ES) and methotrexate (MTX), by OATs in the presence of serum albumin. Increasing concentrations of albumin markedly reduced uptake of OTA by both Xenopus laevis oocytes expressing OATs 1, 3, and 4 and organic anion-transporting polypeptide 1. For all transporters tested, virtually all mediated OTA uptake was eliminated by an albumin concentration equivalent to 10% of that present in the blood plasma. Thus, OTA uptake is dependent on the free substrate concentration and severely limited by binding to human serum albumin. MTX and ES uptake were likewise dependent on free concentration.


Subject(s)
Blood Proteins/metabolism , Kidney/metabolism , Organic Anion Transporters/metabolism , Animals , Biological Transport, Active/physiology , Cell Line , Dogs , Estrone/metabolism , Folic Acid Antagonists/metabolism , In Vitro Techniques , Methotrexate/metabolism , Ochratoxins/metabolism , Oocytes/metabolism , Protein Binding , RNA, Complementary/biosynthesis , Serum Albumin/metabolism , Xenopus laevis
8.
J Pharmacol Exp Ther ; 315(3): 1288-97, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16141367

ABSTRACT

Human organic cation transporters (hOCTs) are expressed in organs of drug absorption and elimination and play an important role in the uptake and elimination of xenobiotics. The purpose of this study was to evaluate the substrate and inhibitory activity of the H2-receptor antagonists ranitidine and famotidine toward hOCTs and to determine the hOCT isoforms involved in the absorption and elimination of these compounds in humans. Inhibition and substrate specificity of hOCT1, hOCT2, and hOCT3 for ranitidine and famotidine were elucidated in cRNA-injected Xenopus laevis oocytes. Ranitidine and famotidine exhibited similarly potent inhibition of [3H]1-methyl-4-phenyl pyridinium uptake into hOCT1-expressing (IC50= 33 and 28 microM, respectively) and hOCT2-expressing oocytes (IC50= 76 and 114 microM, respectively). Famotidine exhibited potent inhibition of hOCT3; in contrast, ranitidine was a moderately weak inhibitor (IC50= 6.7 and 290 microM, respectively). [3H]Ranitidine uptake was stimulated by hOCT1 (Km= 70 +/- 9 microM) and to a much smaller extent by hOCT2. No stimulation of [3H]ranitidine uptake was observed in hOCT3-expressing oocytes. trans-Stimulation and electrophysiology studies suggested that famotidine also is an hOCT1 substrate and exhibits poor or no substrate activity toward hOCT2 and hOCT3. Thus, hOCT1, which is expressed in the intestine and liver, is likely to play a major role in the intestinal absorption and hepatic disposition of ranitidine and famotidine in humans, whereas hOCT2, the major isoform present in the kidney, may play only a minor role in their renal elimination. Famotidine seems to be one of the most potent inhibitors of hOCT3 yet identified.


Subject(s)
Famotidine/pharmacology , Organic Cation Transport Proteins/antagonists & inhibitors , Organic Cation Transporter 1/antagonists & inhibitors , Ranitidine/pharmacology , Animals , Dose-Response Relationship, Drug , Electrophysiology , Famotidine/chemistry , Humans , Microinjections , Molecular Structure , Oocytes/metabolism , Oocytes/physiology , Organic Cation Transport Proteins/genetics , Organic Cation Transporter 1/genetics , Organic Cation Transporter 2 , Polymerase Chain Reaction , Ranitidine/chemistry , Substrate Specificity , Xenopus laevis
9.
Pharm Res ; 22(6): 858-66, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15948029

ABSTRACT

PURPOSE: Our previous studies have shown that both stevioside and steviol inhibited transepithelial transport of para-aminohippurate (PAH) in isolated rabbit renal proximal tubules by interfering with organic anion transport system. The current study examined the direct interactions of stevioside and steviol with specific organic anion transporters. METHODS: S2 cells expressing human organic anion transporters (hOAT1, hOAT2, hOAT3, and hOAT4) and an intact renal epithelium were used to determine the inhibitory effect of stevioside and steviol on organic anion transport. RESULTS: Stevioside at 0.5-1 mM showed no interaction with any OAT. In contrast, steviol markedly inhibited substrate uptake in all S2hOAT cells. Steviol had low IC50 for hOAT1 (11.4 microM) and hOAT3 (36.5 microM) similar to that of probenecid, whereas IC50 for hOAT2 (1000 microM) and hOAT4 (285 microM) was much higher. Results obtained in mouse renal cortical slices were very similar; that is, stevioside was without inhibitory effect and steviol was a potent inhibitor of PAH and estrone sulfate (ES) transport. CONCLUSIONS: Stevioside has no interaction with human or mouse OATs. In contrast, steviol interacts directly with human OATs, in particular, hOAT1 and hOAT3, with a potency approximating probenecid, suggesting that the inhibition of OAT-mediated transport by steviol could alter renal drug clearance.


Subject(s)
Diterpenes, Kaurane/pharmacology , Glucosides/pharmacology , Kidney Cortex/metabolism , Kidney/metabolism , Organic Anion Transporters/metabolism , Animals , Cell Line , Cell Survival/drug effects , Estrone/pharmacology , Glutarates/metabolism , In Vitro Techniques , Kidney/drug effects , Kidney Cortex/drug effects , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Kinetics , Mice , Mice, Inbred C57BL , p-Aminohippuric Acid/metabolism
10.
J Pharmacol Exp Ther ; 314(2): 923-31, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15914676

ABSTRACT

The human organic anion transporter hOAT1 (SLC22A6) contributes to the uptake of a range of small organic anions across the basolateral membrane of the renal proximal tubule and drives their urinary elimination. The aim of this study was to identify genetic variants of hOAT1 and to investigate potential effects on the functional properties of this transporter. Twenty single nucleotide polymorphisms (SNPs) in hOAT1 were identified in genomic DNA from 92 individuals of African, Asian, and Caucasian origin. Two SNPs encoded changes in amino acid sequence; arginine to histidine (residue 50) and lysine to isoleucine (residue 525). Significantly, these SNPs were only present in the samples of African origin. When expressed in Xenopus oocytes, wild-type R50-hOAT1 and the variants R50H-hOAT1 and K525I-hOAT1 all mediated the probenecid-sensitive uptake of the classic organic anion para-aminohippurate (PAH). Kinetic analysis indicated that the transport affinity (K(m)) for PAH was unchanged in the variants, compared with wild type. Interestingly, the K(m) for the nucleoside phosphonate analogs adefovir, cidofovir, and tenofovir seemed to be decreased in the R50H-hOAT1 variant compared with the wild type, whereas the kinetics of K525I-hOAT1 remained unchanged. In conclusion, this is the first study to identify variation of hOAT1 in a racially diverse sample and to investigate the functional properties of the resulting variants. Since hOAT1 has been suggested as the basis of nephrotoxicity induced by nucleoside phosphonate analogs, this study raises the intriguing possibility that individuals with genetic variation in hOAT1, such as R50H, may display different handling of these drugs.


Subject(s)
Organic Anion Transport Protein 1/genetics , Organic Anion Transport Protein 1/metabolism , Polymorphism, Single Nucleotide/physiology , Adenine/analogs & derivatives , Adenine/metabolism , Amino Acid Sequence , Animals , Antiviral Agents/metabolism , Cidofovir , Cytosine/analogs & derivatives , Cytosine/metabolism , DNA/genetics , Genetic Variation , Humans , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed/genetics , Oocytes/drug effects , Oocytes/metabolism , Organophosphonates/metabolism , RNA, Complementary/biosynthesis , RNA, Complementary/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tenofovir , Xenopus laevis , p-Aminohippuric Acid/metabolism
11.
Toxicol Appl Pharmacol ; 204(3): 256-62, 2005 May 01.
Article in English | MEDLINE | ID: mdl-15845417

ABSTRACT

One challenge of modern biology is to be able to match genes and their encoded proteins with events at the molecular, cellular, tissue, and organism levels, and thus, provide a multi-level understanding of gene function and dysfunction. How well this can be done for xenobiotic transporters depends on a knowledge of the genes expressed in the tissue, the cellular locations of the gene products (do they function for uptake or efflux?), and our ability to match substrates with transporters using information obtained from cloned transporters functioning in heterologous expression systems. Clearly, making a rational choice of expression system to use for the characterization and study of cloned xenobiotic transporters is a critical part of study design. This choice requires well-defined goals, as well as an understanding of the strengths and weaknesses of candidate expression systems.


Subject(s)
Carrier Proteins/biosynthesis , Xenobiotics/metabolism , Animals , Carrier Proteins/genetics , Cloning, Molecular , Humans
12.
J Pharmacol Exp Ther ; 313(2): 621-8, 2005 May.
Article in English | MEDLINE | ID: mdl-15644426

ABSTRACT

The natural sweetening agent stevioside and its aglycone metabolite, steviol, have been shown to inhibit transepithelial transport of para-aminohippurate (PAH) in isolated rabbit renal proximal tubules by interfering with basolateral entry. The aim of the present study was to determine which of the cloned basolateral organic anion transporters were involved in the renal transport of stevioside and steviol. This question was addressed in Xenopus laevis oocytes expressing human organic anion transporter 1 (hOAT1), 3 (hOAT3), and winter flounder OAT (fOat1). The parent compound, stevioside, had no inhibitory effect on either PAH (hOAT1) or ES (estrone sulfate; hOAT3) uptake. In contrast, steviol showed significant, dose-dependent inhibition of PAH and ES uptake in hOAT1- or hOAT3-expressing oocytes, respectively. The IC(50) of steviol for hOAT1-mediated PAH transport was 11.1 microM compared with 62.6 microM for hOAT3-mediated ES uptake. The Michaelis-Menten inhibition constants (K(i)) for steviol transport mediated by hOAT1 and hOAT3 were 2.0 +/- 0.3 and 5.4 +/- 2.0 microM, respectively. Trans-stimulation of PAH efflux by steviol was assessed to determine whether steviol itself was transported by hOAT1 or hOAT3. A low concentration of 1 microM steviol increased the efflux of [(3)H]PAH (trans-stimulated) via both hOAT1 and hOAT3. In addition, it was shown by electrophysiology that steviol entry induced inward current in fOat1-expressing oocytes. In conclusion, stevioside had no interaction with either hOAT1 or hOAT3, whereas hOAT1, hOAT3, and fOat1 were all shown to be capable of steviol transport and thus, can play a role in its renal transport and excretion.


Subject(s)
Diterpenes, Kaurane/metabolism , Glucosides/metabolism , Organic Anion Transport Protein 1/metabolism , Organic Anion Transporters, Sodium-Independent/metabolism , Sweetening Agents/metabolism , Animals , Biological Transport/physiology , Diterpenes, Kaurane/chemistry , Female , Glucosides/chemistry , Humans , Stevia/chemistry , Sweetening Agents/chemistry , Xenopus laevis
13.
Acc Chem Res ; 37(11): 874-81, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15612677

ABSTRACT

Ochratoxins are a class of naturally occurring compounds produced by several fungi. The most toxic is ochratoxin A (OTA), and occurrence of some human nephropathies and tumors correlate with enhanced OTA exposure. In this Account, the following areas are examined: molecular details of the binding of OTA to human serum albumin (HSA), the influences of binding to HSA on the trans-port of OTA across epithelial cell membranes by organic anion transport proteins, the oxidative activation of OTA, and the formation of OTA adducts with biological molecules. These studies are beginning to provide a detailed chemical model for the trans-port, accumulation, and genotoxic and carcinogenic effects of OTA.


Subject(s)
Ochratoxins/metabolism , Ochratoxins/toxicity , Albumins/metabolism , Autoradiography , Biological Transport , Humans , Oxidation-Reduction , Protein Binding
14.
J Am Soc Nephrol ; 15(10): 2648-54, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15466269

ABSTRACT

Reactive oxygen species are implicated as mediators of tissue damage in ischemic and toxic acute renal failure. Whereas many agents can inhibit renal ischemic injury, only hepatocyte growth factor, melatonin, N-acetylcysteine, and DMSO inhibit injury after mercuric chloride administration. Although it has been suggested that DMSO may chelate the mercuric ion, more recent studies suggest that it has anti-inflammatory and antioxidant effects. Acute renal failure was induced by 5 mg/kg subcutaneous injection of mercuric chloride in BALB/c mice. DMSO (3.8 ml/kg, 40% in PBS) or vehicle (PBS) was injected intraperitoneally at 0 and 24 h after mercuric chloride injection, or DMSO treatment was delayed 3 or 5 h. DMSO prevented increases in serum creatinine and tubular damage at 24 and 48 h. When DMSO treatment was delayed by 3 h, it was still beneficial; however, with a 5-h delay, the histology score and serum creatinine were not significantly decreased. DMSO partially prevented a mercuric chloride-induced decrease in glutathione peroxidase activity and completely prevented the transient decrease in superoxide dismutase activity. Neither mercuric chloride nor DMSO affected catalase activity significantly. For investigating possible effects of DMSO on cellular mercuric ion uptake, MDCK cells that were transfected with human organic anion transporter-1 were used. 203Hg uptake was inhibited 90% by N-acetylcysteine but only 5% by DMSO, indicating that the effect of DMSO is not related to chelating mercuric ion or inhibiting its uptake. It is concluded that DMSO acts in part as an antioxidant to inhibit mercuric chloride-induced acute renal injury.


Subject(s)
Acute Kidney Injury/pathology , Acute Kidney Injury/prevention & control , Dimethyl Sulfoxide/pharmacology , Oxidative Stress/drug effects , Acute Kidney Injury/chemically induced , Animals , Biopsy, Needle , Disease Models, Animal , Drug Administration Schedule , Immunohistochemistry , Injections, Intraperitoneal , Kidney Function Tests , Male , Mercuric Chloride , Mice , Mice, Inbred BALB C , Probability , Random Allocation , Reference Values , Sensitivity and Specificity , Time Factors
15.
Am J Physiol Renal Physiol ; 286(5): F972-8, 2004 May.
Article in English | MEDLINE | ID: mdl-15075193

ABSTRACT

The choroid plexus actively transports endogenous, xenobiotic, and therapeutic compounds from cerebrospinal fluid to blood, thereby limiting their exposure to the central nervous system (CNS). Establishing the mechanisms responsible for this transport is critical to our understanding of basic choroid plexus physiology and will likely impact drug targeting to the CNS. We recently generated an organic anion transporter 3- (Oat3)-null mouse, which exhibited loss of PAH, estrone sulfate, and taurocholate transport in kidney and of fluorescein (FL) transport in choroid plexus. Here, we measured the uptake of four Oat3 substrates by choroid plexus from wild-type and Oat3-null mice to establish 1) the contribution of Oat3 to the apical uptake of each substrate and 2) the Na dependence of transport by Oat3 in the intact tissue. Mediated transport of PAH and FL was essentially abolished in tissue from Oat3-null mice. In contrast, only a 33% reduction in estrone sulfate uptake was observed in tissue from Oat3-null mice and, surprisingly, no reduction in taurocholate uptake could be detected. For PAH, FL, and estrone sulfate, all Oat3-mediated transport was Na dependent. However, estrone sulfate and taurocholate also exhibited additional mediated and Na-dependent components of uptake that were not attributed to Oat3, demonstrating the complexity of organic anion transport in this tissue and the need for further examination of expressed transporters and their energetics.


Subject(s)
Blood-Brain Barrier/physiology , Choroid Plexus/metabolism , Estrone/analogs & derivatives , Organic Anion Transporters, Sodium-Independent/genetics , Organic Anion Transporters, Sodium-Independent/metabolism , Animals , Anions/pharmacokinetics , Cerebrospinal Fluid/metabolism , Contrast Media/pharmacokinetics , Estrone/metabolism , Fluorescein/pharmacokinetics , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Microscopy, Confocal , Sodium/metabolism , Taurocholic Acid/metabolism , Tritium , p-Aminohippuric Acid/pharmacokinetics
17.
Am J Physiol Renal Physiol ; 285(4): F775-83, 2003 Oct.
Article in English | MEDLINE | ID: mdl-12837685

ABSTRACT

Although membrane vesicle studies have established the driving forces that mediate renal organic anion secretion and the organic anion transporter Oat1 has now been cloned in several species, its stoichiometry has remained uncertain. In this study, we used electrophysiology, kinetic measurements, and static head experiments to determine the coupling ratio for Oat1-mediated organic anion/dicarboxylate exchange. Initial experiments demonstrated that uptake of PAH by voltage-clamped Xenopus laevis oocytes expressing rOat1 led to net entry of positive charge, suggesting that coupling was one-to-one. This conclusion was confirmed by kinetic analysis of PAH and glutarate fluxes in native basolateral membrane vesicles from the rat renal cortex, which showed a Hill coefficient of 1. Similarly, static head experiments on the rat vesicles also showed a 1:1 coupling ratio. To confirm these conclusions in a system expressing a single cloned transporter, Madin-Darby canine kidney cells were stably transfected with the human exchanger hOAT1. The hOAT1-expressing cell line showed extensive PAH transport, which was very similar in all respects to transport expressed by hOAT1 in Xenopus oocytes. Its Km for PAH was 8 microM and glutarate effectively trans-stimulated PAH transport. When stoichiometry was assessed using plasma membranes isolated from the hOAT1-expressing cells, both kinetic and static head data indicated that hOAT1 also demonstrated a 1:1 coupling between organic anion and dicarboxylate.


Subject(s)
Anions/metabolism , Dicarboxylic Acids/metabolism , Kidney Cortex/metabolism , Organic Anion Transport Protein 1/metabolism , Animals , Cell Line , Chemical Phenomena , Chemistry , Dogs , Female , Humans , In Vitro Techniques , Kinetics , Male , Mathematics , Oocytes/physiology , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Xenopus laevis , p-Aminohippuric Acid/pharmacokinetics
18.
Environ Health Perspect ; 111(4): 444-54, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12676597

ABSTRACT

In this article, we examine existing data on the use of transgenic mouse models for identification of human carcinogens. We focus on the three most extensively studied of these mice, Trp53+/-, Tg/AC, and RasH2, and compare their performance with the traditional 2-year rodent bioassay. Data on 99 chemicals were evaluated. Using the International Agency for Research on Cancer/Report on Carcinogens determinations for the carcinogenicity of these chemicals to humans as the standard for comparison, we evaluated a variety of potential testing strategies ranging from individual transgenic models to combinations of these three models with each other and with traditional rodent assays. The individual transgenic models made the "correct" determinations (positive for carcinogens; negative for noncarcinogens) for 74-81% of the chemicals, with an increase to as much as 83% using combined strategies (e.g., Trp53+/- for genotoxic chemicals and RasH2 for all chemicals). For comparison, identical analysis of chemicals in this data set that were tested in the 2-year, two-species rodent bioassay yielded correct determinations for 69% of the chemicals. However, although the transgenic models had a high percentage of correct determinations, they did miss a number of known or probable human carcinogens, whereas the bioassay missed none of these chemicals. Therefore, we also evaluated mixed strategies using transgenic models and the rat bioassay. These strategies yielded approximately 85% correct determinations, missed no carcinogens, and cut the number of positive determinations for human noncarcinogens in half. Overall, the transgenic models performed well, but important issues of validation and standardization need further attention to permit their regulatory acceptance and use in human risk assessment.


Subject(s)
Carcinogens/adverse effects , Disease Models, Animal , Mice, Transgenic , Animals , Biological Assay/methods , Drug Evaluation, Preclinical , Female , Genes, p53 , Genes, ras , Humans , Male , Mice , Mutagenicity Tests , Neoplasms/chemically induced , Reference Values , Risk Assessment , Sensitivity and Specificity
19.
Mol Pharmacol ; 63(3): 590-6, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12606766

ABSTRACT

Mercuric ions are highly reactive and form a variety of organic complexes or conjugates in vivo. The renal proximal tubule is a primary target for mercury uptake and toxicity, and circumstantial evidence implicates organic anion transporters in these processes. To test this hypothesis directly, the transport and toxicity of mercuric-thiol conjugates were characterized in a Madin-Darby canine kidney cell line stably transfected with the human organic anion transporter 1 (hOAT1). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-terazolium bromide assays (for mitochondrial dehydrogenase) confirmed that mercuric conjugates of the thiols N-acetylcysteine (NAC), cysteine, or glutathione were more toxic in hOAT1-transfected cells than in the nontransfected cells. The NAC-Hg(2+) conjugate was most cytotoxic, inducing greater than 50% cellular death over 18 h at a concentration of 100 microM. The cytotoxic effects were fully reversed by probenecid (an OAT1 inhibitor) and partially reversed by p-aminohippurate (an OAT1 substrate). Toxicity of this conjugate was reduced by the OAT1-exchangeable dicarboxylates alpha-ketoglutarate, glutarate, and adipate, but not by succinate, a nonexchangeable dicarboxylate. (203)Hg-uptake studies showed probenecid-sensitive uptake of mercury-thiol conjugates in the hOAT1-transfected cells. The apparent K(m) for the NAC-Hg(2+) conjugate was 44 +/- 9 microM. Uptake of the NAC-Hg(2+) conjugate was cis-inhibited by glutarate, but not by methylsuccinate, paralleling their effects on toxicity. Probenecid-sensitive transport of the NAC-Hg(2+) conjugate was also shown to occur in Xenopus laevis oocytes expressing the hOAT1 or the rOAT3 transporters, suggesting that OAT3 may also transport thiol-Hg(2+) conjugates. Thus, renal accumulation and toxicity of thiol-Hg(2+) conjugates may depend in part on the activity of the organic transport system.


Subject(s)
Mercury/toxicity , Organic Anion Transport Protein 1/metabolism , Animals , Biological Transport , Cell Survival/drug effects , Cells, Cultured , Dogs , Humans , Kidney/cytology , Mercury Isotopes/metabolism
20.
Am J Physiol Renal Physiol ; 284(4): F763-9, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12488248

ABSTRACT

Basolateral uptake of organic anions in renal proximal tubule cells is indirectly coupled to the Na(+) gradient through Na(+)-dicarboxylate cotransport and organic anion/dicarboxylate exchange. One member of the organic anion transporter (OAT) family, Oat1, is expressed in the proximal tubule and is an organic anion/dicarboxylate exchanger. However, a second organic anion carrier, Oat3, is also highly expressed in the renal proximal tubule, but its mechanism is unclear. Thus we have assessed Oat3 function in Xenopus laevis oocytes and rat renal cortical slices. Probenecid-sensitive uptake of p-aminohippurate (PAH, an Oat1 and Oat3 substrate) and estrone sulfate (ES, an Oat3 substrate) in rat Oat3-expressing oocytes was significantly trans-stimulated by preloading the oocytes with the dicarboxylate glutarate (GA). GA stimulation of ES transport by oocytes coexpressing rabbit Na(+)-dicarboxylate cotransporter 1 and rat Oat3 was significantly inhibited when the preloading medium contained Li(+) or methylsuccinate (MS) or when Na(+) was absent. All these treatments inhibit the Na(+)-dicarboxylate cotransporter, but not rat Oat3. Li(+), MS, and Na(+) removal had no effect when applied during the ES uptake step, rather than during the GA preloading step. Concentrative ES uptake in rat renal cortical slices was also demonstrated to be probenecid and Na(+) sensitive. Accumulation of ES was stimulated by GA, and this stimulation was completely blocked by probenecid, Li(+), MS, taurocholate, and removal of Na(+). Thus Oat3 functions as an organic anion/dicarboxylate exchanger that couples organic anion uptake indirectly to the Na(+) gradient.


Subject(s)
Dicarboxylic Acids/metabolism , Estrone/analogs & derivatives , Organic Anion Transporters, Sodium-Independent/metabolism , Sodium/metabolism , Animals , Estrone/pharmacokinetics , Glutarates/metabolism , Glutarates/pharmacology , In Vitro Techniques , Ion Transport/drug effects , Ion Transport/physiology , Lithium/pharmacology , Microinjections , Oocytes/drug effects , Oocytes/metabolism , Organic Anion Transporters, Sodium-Independent/genetics , Probenecid/pharmacology , Rats , Taurocholic Acid/pharmacology , Xenopus laevis , p-Aminohippuric Acid/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL