Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(20): 26299-26315, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38733338

ABSTRACT

There are various methods being tried to address the sluggish kinetics observed in Al-ion batteries (AIBs). They mostly deal with morphology tuning, but have led to limited improvement. A new approach is proposed to overcome this limitation. It focuses on the use of a redox additive modified electrolyte in combination with framework like materials, which have wider channels. The ordered microporous and interconnected framework of ZIF 67, with large surface area, effectively facilitates the diffusion of aluminum ions. Therefore, AIBs are able to exhibit a superior discharge capacity of 288 mAh g-1 at 0.2 A g-1 current density with robust cycling stability. The addition of potassium ferricyanide as a redox-active species in an aqueous solution of aluminum chloride (supporting electrolyte) leads to significant enhancement in the specific capacity with much higher cycling stability. Al-ion based BatCap devices can be assembled by using ZIF 67 as the cathode, ZIF 67 derived porous carbon as the anode, and a redox additive modified electrolyte. The BatCap device exhibits excellent energy density of 86 Wh kg-1 at a power density of 2 KW kg-1, which is higher than reported aqueous AIBs. The ex situ characterization clearly explains the unexplored mechanism of redox additives in AIBs.

2.
Nanoscale Adv ; 5(4): 1172-1182, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36798489

ABSTRACT

Quick and precise exfoliation of bulk molybdenum sulphide into few layers can bring a quantum leap in the electrochemical performance of this material. Such a cost-effective exfoliation route to obtain few layers of MoS2 nanosheets with a high mass yield of ∼75% is presented in this study. The electrochemical behaviours of three types of samples, namely pristine MoS2 and MoS2 exfoliated for 3 h and 5 h, were compared and the reasons leading to their performance modulation are explained. The performance could be tuned by changing the nature of the electrolytes, as shown using three different electrolytes, i.e. H2SO4, Na2SO4, and KOH. The electrochemical performance of a supercapacitor device fabricated using the 5 h-exfoliated sample showed many fold improvement. The strategy of combining with a 2D material-based anode is an interesting way forward for such devices. In addition, the anode material has to be carefully chosen so that high performance can be ensured. The usefulness of 2D flake-like WO3 as an anode was investigated first before establishing its worthiness in a hybrid device. The hybrid device was able to deliver an excellent energy density of 33.74 W h kg-1 with long-term cycling stability and coulombic efficiency, thus proving its applicability for high-performance energy-storage devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...