Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Lett ; 587: 216710, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38369006

ABSTRACT

Cancer remains a leading global cause of mortality, demanding early diagnosis and effective treatment. Traditional therapeutic methods often fall short due to their need for more specificity and systemic toxicity. In this challenging landscape, nanodiamonds (ND) emerge as a potential solution, mitigating the limitations of conventional approaches. ND are tiny carbon particles that mimic traditional diamonds chemical stability and hardness and harness nanomaterials' advantages. ND stands out for the unique properties that make them promising nanotheranostics candidates, combining therapeutic and imaging capabilities in one platform. Many of these applications depend on the design of the particle's surface, as the surface's role is crucial in transporting bioactive molecules, preventing aggregation, and building composite materials. This review delves into ND's distinctive features, structural and optical characteristics, and their profound relevance in advancing cancer diagnosis and treatment methods. The report delves into how these exceptional ND properties drive the development of state-of-the-art techniques for precise tumor targeting, boosting the effectiveness of chemotherapy as a chemosensitizer, harnessing immunotherapy strategies, facilitating precision medicine, and creating localized microfilm devices for targeted therapies.


Subject(s)
Nanodiamonds , Neoplasms , Humans , Nanodiamonds/chemistry , Nanodiamonds/therapeutic use , Precision Medicine , Drug Delivery Systems , Neoplasms/diagnosis , Neoplasms/drug therapy , Diagnostic Imaging
2.
Analyst ; 146(6): 1839-1843, 2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33592079

ABSTRACT

We present a new method for the rapid and cost-effective fabrication of solid electrolyte-based printed potentiometric oxygen sensors working at ambient temperature using Cu-dithiolated diethylene triamine pentaacetic acid complex molecules (Cu-DTDTPA) adsorbed on Grade-1 laboratory filter paper and subsequent 3-D printing of interdigitated electrodes employing silver/silver chloride ink. The decrease in conductivity with time and frequency-dependent impedance response confirms the filter paper adsorbed Cu-DTDTPA as a solid electrolyte. A plausible structure of the Cu-DTDTPA solid electrolyte and its mechanism of reaction with oxygen are presented. A maximum sensitivity of 0.052 mV per %O2, the maximum response time of 1.15 s per %O2, a wide measurement output ranging from 14.55 mV to 17.25 mV for 20%-90% of O2 concentration, a maximum standard deviation of 0.12 mV in output voltage, almost similar trends of the response on temperature, humidity variations and ageing and high selectivity establish the sensor for use in medical ventilator applications, specifically in the COVID19 pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL
...