Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 9(4)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38206757

ABSTRACT

Functional avidity is supposed to critically shape the quality of immune responses, thereby influencing host protection against infectious agents including SARS-CoV-2. Here we show that after human SARS-CoV-2 vaccination, a large portion of high-avidity spike-specific CD4+ T cells lost CD3 expression after in vitro activation. The CD3- subset was enriched for cytokine-positive cells, including elevated per-cell expression levels, and showed increased polyfunctionality. Assessment of key metabolic pathways by flow cytometry revealed that superior functionality was accompanied by a shift toward fatty acid synthesis at the expense of their oxidation, whereas glucose transport and glycolysis were similarly regulated in SARS-CoV-2-specific CD3- and CD3+ subsets. As opposed to their CD3+ counterparts, frequencies of vaccine-specific CD3- T cells positively correlated with both the size of the naive CD4+ T cell pool and vaccine-specific IgG levels. Moreover, their frequencies negatively correlated with advancing age and were impaired in patients under immunosuppressive therapy. Typical recall antigen-reactive T cells showed a comparable segregation into functionally and metabolically distinct CD3+ and CD3- subsets but were quantitatively maintained upon aging, likely due to earlier recruitment in life. In summary, our data identify CD3- T helper cells as correlates of high-quality immune responses that are impaired in at-risk populations.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Down-Regulation , COVID-19/prevention & control , SARS-CoV-2 , T-Lymphocytes, Helper-Inducer
2.
Front Immunol ; 14: 1239519, 2023.
Article in English | MEDLINE | ID: mdl-37942315

ABSTRACT

Stem cell transplant recipients (SCTR) are imperiled to increased risks after SARS-CoV2 infection, supporting the need for effective vaccination strategies for this vulnerable group. With respect to pediatric patients, data on immunogenicity of SARS-CoV2 mRNA-based vaccination is limited. We therefore comprehensively examined specific humoral, B- and T cell responses in a cohort of 2-19 year old SCTR after the second and third vaccine dose. Only after booster vaccination, transplant recipients reached similar levels of vaccine-specific IgG, IgA and neutralizing antibodies against omicron variant as age-matched controls. Although frequencies of SARS-CoV2 specific B cells increased after the third dose, they were still fourfold reduced in patients compared to controls. Overall, the majority of individuals enrolled mounted SARS-CoV2 Spike protein-specific CD4+ T helper cell responses with patients showing significantly higher portions than controls after the third dose. With respect to functionality, however, SCTR were characterized by reduced frequencies of specific interferon gamma producing CD4+ T cells, along with an increase in IL-2 producers. In summary, our data identify distinct quantitative and qualitative impairments within the SARS-CoV2 vaccination specific B- and CD4+ T cell compartments. More importantly, humoral analyses highlight the need for a booster vaccination of SCTR particularly for development of neutralizing antibodies.


Subject(s)
COVID-19 , RNA, Viral , Humans , Child , Child, Preschool , Adolescent , Young Adult , Adult , Transplant Recipients , COVID-19/prevention & control , SARS-CoV-2 , Vaccines, Synthetic , Antibodies, Neutralizing , Stem Cell Transplantation , mRNA Vaccines
3.
J Clin Invest ; 133(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37815874

ABSTRACT

Tissue-resident lymphocytes provide organ-adapted protection against invading pathogens. Whereas their biology has been examined in great detail in various infection models, their generation and functionality in response to vaccination have not been comprehensively analyzed in humans. We therefore studied SARS-CoV-2 mRNA vaccine-specific T cells in surgery specimens of kidney, liver, lung, bone marrow, and spleen compared with paired blood samples from largely virus-naive individuals. As opposed to lymphoid tissues, nonlymphoid organs harbored significantly elevated frequencies of spike-specific CD4+ T cells compared with blood showing hallmarks of tissue residency and an expanded memory pool. Organ-derived CD4+ T cells further exhibited increased polyfunctionality over those detected in blood. Single-cell RNA-Seq together with T cell receptor repertoire analysis indicated that the clonotype rather than organ origin is a major determinant of transcriptomic state in vaccine-specific CD4+ T cells. In summary, our data demonstrate that SARS-CoV-2 vaccination entails acquisition of tissue memory and residency features in organs distant from the inoculation site, thereby contributing to our understanding of how local tissue protection might be accomplished.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , SARS-CoV-2/genetics , Immunologic Memory , COVID-19/prevention & control , Lymphoid Tissue , Vaccination , RNA, Messenger , Antibodies, Viral
4.
Transpl Int ; 35: 10677, 2022.
Article in English | MEDLINE | ID: mdl-35992746

ABSTRACT

Protection of adult kidney transplant recipients against SARS-CoV2 was shown to be strongly impaired owing to low reactogenicity of available vaccines. So far, data on vaccination outcomes in adolescents are scarce due to later vaccination approval for this age group. We therefore comprehensively analyzed vaccination-specific humoral-, T- and B-cell responses in kidney transplanted adolescents aged 12-18 years in comparison to healthy controls 6 weeks after standard two-dose BNT162b2 ("Comirnaty"; Pfizer/BioNTech) vaccination. Importantly, 90% (18/20) of transplanted adolescents showed IgG seroconversion with 75% (15/20) developing neutralizing titers. Still, both features were significantly diminished in magnitude compared to controls. Correspondingly, spike-specific B cells were quantitatively reduced and enriched for non-isotype-class-switched IgD+27+ memory cells in patients. Whereas spike specific CD4+ T cell frequencies were similar in both groups, cytokine production and memory differentiation were significantly impaired in transplant recipients. Although our data identify limitations in all arms of vaccine-specific immunity, the majority of our adolescent patients showed robust humoral responses despite antimetabolite-based treatment being associated with poor vaccination outcomes in adults.


Subject(s)
COVID-19 , Kidney Transplantation , Adolescent , Adult , Antibodies, Viral , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/adverse effects , COVID-19/prevention & control , Humans , Immunity, Humoral , Kidney Transplantation/adverse effects , RNA, Viral , SARS-CoV-2 , Vaccination , Vaccines, Synthetic , mRNA Vaccines
5.
Am J Transplant ; 22(11): 2529-2547, 2022 11.
Article in English | MEDLINE | ID: mdl-35851547

ABSTRACT

Donor age is a major risk factor for allograft outcome in kidney transplantation. The underlying cellular mechanisms and the recipient's immune response within an aged allograft have yet not been analyzed. A comprehensive immunophenotyping of naïve and transplanted young versus aged kidneys revealed that naïve aged murine kidneys harbor significantly higher frequencies of effector/memory T cells, whereas regulatory T cells were reduced. Aged kidney-derived CD8+ T cells produced more IFNγ than their young counterparts. Senescent renal CD8+ T and NK cells upregulated the cytotoxicity receptor NKG2D and the enrichment of memory-like CD49a+ CXCR6+ NK cells was documented in aged naïve kidneys. In the C57BL/6 to BALB/c kidney transplantation model, recipient-derived T cells infiltrating an aged graft produced significantly more IFNγ, granzyme B and perforin on day 7 post-transplantation, indicating an enhanced inflammatory, cytotoxic response towards the graft. Pre-treatment of aged kidney donors with the senolytic drug ABT-263 changed the recipient-derived effector molecule profile to significantly reduced levels of IFNγ and IL-10 compared to controls. Graft function after ABT-263 pre-treatment was significantly improved 28 days post kidney transplantation. In conclusion, renal senescence also occurs at the immunological level (inflamm-aging) and aged organs provoke an altered recipient-dominated immune response in the graft.


Subject(s)
Kidney Transplantation , Mice , Animals , Kidney Transplantation/adverse effects , CD8-Positive T-Lymphocytes , Kidney , Aging/physiology , Inflammation/etiology , Graft Rejection/etiology
6.
JCI Insight ; 7(9)2022 05 09.
Article in English | MEDLINE | ID: mdl-35349490

ABSTRACT

Transplant recipients exhibit an impaired protective immunity after SARS-CoV-2 vaccination, potentially caused by mycophenolate (MPA) immunosuppression. Recent data from patients with autoimmune disorders suggest that temporary MPA hold might greatly improve booster vaccination outcomes. We applied a fourth dose of SARS-CoV-2 vaccine to 29 kidney transplant recipients during a temporary (5 weeks) MPA/azathioprine hold, who had not mounted a humoral immune response to previous vaccinations. Seroconversion until day 32 after vaccination was observed in 76% of patients, associated with acquisition of virus-neutralizing capacity. Interestingly, 21/25 (84%) calcineurin inhibitor-treated patients responded, but only 1/4 belatacept-treated patients responded. In line with humoral responses, counts and relative frequencies of spike receptor binding domain-specific (RBD-specific) B cells were markedly increased on day 7 after vaccination, with an increase in RBD-specific CD27++CD38+ plasmablasts. Whereas overall proportions of spike-reactive CD4+ T cells remained unaltered after the fourth dose, frequencies were positively correlated with specific IgG levels. Importantly, antigen-specific proliferating Ki67+ and in vivo-activated programmed cell death 1-positive T cells significantly increased after revaccination during MPA hold, whereas cytokine production and memory differentiation remained unaffected. In summary, antimetabolite hold augmented all arms of immunity during booster vaccination. These data suggest further studies of antimetabolite hold in kidney transplant recipients.


Subject(s)
Antimetabolites , COVID-19 Vaccines , COVID-19 , Kidney Transplantation , Antibodies, Viral , Antimetabolites/therapeutic use , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Immunity, Cellular , Immunity, Humoral , Immunosuppressive Agents/therapeutic use , SARS-CoV-2 , Transplant Recipients , Vaccination
7.
J Am Soc Nephrol ; 32(12): 3027-3033, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34667083

ABSTRACT

BACKGROUND: Accumulating evidence sugges ts solid organ transplant recipients, as opposed to the general population, show strongly impaired responsiveness toward standard SARS-CoV-2 mRNA-based vaccination, demanding alternative strategies for protectio n o f this vulnerable group. METHODS: In line with recent recommendations, a third dose of either heterologous ChAdOx1 (AstraZeneca) or homologous BNT162b2 (BioNTech) was administered to 25 kidney transplant recipients (KTR) without humoral response after two doses of BNT162b2, followed by analysis of serological responses and vaccine-specific B- and T-cell immunity. RESULTS: Nine out of 25 (36%) KTR under standard immunosuppressive treatment seroconverted until day 27 after the third vaccination, whereas one patient developed severe COVID-19 infection immediately after vaccination. Cellular analysis 7 days after the third dose showed significantly elevated frequencies of viral spike-protein receptor-binding domain-specific B cells in humor al responders as compared with nonresponders. Likewise, portions of spike-reactive CD4 + T helper cells were significantly elevated in patients who were seroconverting. Furthermore, overall frequencies of IL-2 + , IL-4 + , and polyfunctional CD4 + T cells significantly increased after the third dose, whereas memory/effector differentiation remained unaffected. CONCLUSIONS: Our data suggest a fraction of transplant recipients benefit from triple vaccination, where seroconversion is associated with quantitative and qualitative changes of cellular immunity. At the same time, the study highlights that modified vaccination approaches for immunosuppressed patients remain an urgent medical need. PODCAST: This article contains a podcast at https://www.asn-online.org/media/podcast/JASN/2021_11_23_briggsgriffin112321.mp3.


Subject(s)
COVID-19 , Kidney Transplantation , Humans , COVID-19 Vaccines , BNT162 Vaccine , Transplant Recipients , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Viral
8.
J Clin Invest ; 131(14)2021 07 15.
Article in English | MEDLINE | ID: mdl-34101623

ABSTRACT

Novel mRNA-based vaccines have been proven to be powerful tools in combating the global pandemic caused by SARS-CoV-2, with BNT162b2 (trade name: Comirnaty) efficiently protecting individuals from COVID-19 across a broad age range. Still, it remains largely unknown how renal insufficiency and immunosuppressive medication affect development of vaccine-induced immunity. We therefore comprehensively analyzed humoral and cellular responses in kidney transplant recipients after the standard second vaccination dose. As opposed to all healthy vaccinees and the majority of hemodialysis patients, only 4 of 39 and 1 of 39 transplanted individuals showed IgA and IgG seroconversion at day 8 ± 1 after booster immunization, with minor changes until day 23 ± 5, respectively. Although most transplanted patients mounted spike-specific T helper cell responses, frequencies were significantly reduced compared with those in controls and dialysis patients and this was accompanied by a broad impairment in effector cytokine production, memory differentiation, and activation-related signatures. Spike-specific CD8+ T cell responses were less abundant than their CD4+ counterparts in healthy controls and hemodialysis patients and almost undetectable in transplant patients. Promotion of anti-HLA antibodies or acute rejection was not detected after vaccination. In summary, our data strongly suggest revised vaccination approaches in immunosuppressed patients, including individual immune monitoring for protection of this vulnerable group at risk of developing severe COVID-19.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , Kidney Transplantation/adverse effects , SARS-CoV-2 , Adult , Aged , Antibodies, Viral/biosynthesis , BNT162 Vaccine , COVID-19 Vaccines/immunology , Case-Control Studies , Cohort Studies , Cytokines/immunology , Female , Humans , Immunity, Cellular , Immunity, Humoral , Immunization, Secondary , Immunoglobulin A/biosynthesis , Immunoglobulin G/biosynthesis , Immunologic Memory , Immunosuppressive Agents/adverse effects , Lymphocyte Activation , Male , Middle Aged , Monitoring, Immunologic , Renal Dialysis/adverse effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Transplantation Immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...