Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Cancer Res ; 82(9): 1774-1788, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35502542

ABSTRACT

Fibroblastic reticular cells (FRC) are immunologically specialized myofibroblasts that control the elasticity of the lymph node, in part through their contractile properties. Swelling of tumor-draining lymph nodes is a hallmark of lymphophilic cancers such as cutaneous melanoma. Melanoma displays high intratumoral heterogeneity with the coexistence of melanoma cells with variable differentiation phenotypes from melanocytic to dedifferentiated states. Factors secreted by melanoma cells promote premetastatic lymph node reprograming and tumor spreading. Elucidating the impact of the melanoma secretome on FRC could help identify approaches to prevent metastasis. Here we show that melanocytic and dedifferentiated melanoma cells differentially impact the FRC contractile phenotype. Factors secreted by dedifferentiated cells, but not by melanocytic cells, strongly inhibited actomyosin-dependent contractile forces of FRC by decreasing the activity of the RHOA-RHO-kinase (ROCK) pathway and the mechano-responsive transcriptional coactivator Yes1 associated transcriptional regulator (YAP). Transcriptional profiling and biochemical analyses indicated that actomyosin cytoskeleton relaxation in FRC is driven by inhibition of the JAK1-STAT3 pathway. This FRC relaxation was associated with increased FRC proliferation and activation and with elevated tumor invasion in vitro. The secretome of dedifferentiated melanoma cells also modulated the biomechanical properties of distant lymph node in premetastatic mouse models. Finally, IL1 produced by dedifferentiated cells was involved in the inhibition of FRC contractility. These data highlight the role of the JAK1-STAT3 and YAP pathways in spontaneous contractility of resting FRC. They also suggest that dedifferentiated melanoma cells specifically target FRC biomechanical properties to favor tumor spreading in the premetastatic lymph node niche. Targeting this remote communication could be an effective strategy to prevent metastatic spread of the disease. SIGNIFICANCE: Communication between dedifferentiated melanoma cells and lymph node fibroblasts reprograms the biomechanical properties of the premetastatic lymph node niche to promote tumor invasion. See related commentary by Lund, p. 1692.


Subject(s)
Melanoma , Skin Neoplasms , Actomyosin/metabolism , Animals , Fibroblasts/metabolism , Humans , Interleukin-1 , Janus Kinase 1/metabolism , Lymph Nodes/pathology , Melanoma/pathology , Mice , STAT3 Transcription Factor/metabolism , Skin Neoplasms/pathology
2.
EMBO Mol Med ; 14(2): e11814, 2022 02 07.
Article in English | MEDLINE | ID: mdl-34957688

ABSTRACT

Resistance to BRAF/MEK inhibitor therapy in BRAFV600 -mutated advanced melanoma remains a major obstacle that limits patient benefit. Microenvironment components including the extracellular matrix (ECM) can support tumor cell adaptation and tolerance to targeted therapy; however, the underlying mechanisms remain poorly understood. Here, we investigated the process of matrix-mediated drug resistance (MMDR) in response to BRAFV600 pathway inhibition in melanoma. We demonstrate that physical and structural cues from fibroblast-derived ECM abrogate anti-proliferative responses to BRAF/MEK inhibition. MMDR is mediated by drug-induced linear clustering of phosphorylated DDR1 and DDR2, two tyrosine kinase collagen receptors. Depletion and pharmacological targeting of DDR1 and DDR2 overcome ECM-mediated resistance to BRAF-targeted therapy. In xenografts, targeting DDR with imatinib enhances BRAF inhibitor efficacy, counteracts drug-induced collagen remodeling, and delays tumor relapse. Mechanistically, DDR-dependent MMDR fosters a targetable pro-survival NIK/IKKα/NF-κB2 pathway. These findings reveal a novel role for a collagen-rich matrix and DDR in tumor cell adaptation and resistance. They also provide important insights into environment-mediated drug resistance and a preclinical rationale for targeting DDR signaling in combination with targeted therapy in melanoma.


Subject(s)
Discoidin Domain Receptor 1 , Discoidin Domain Receptor 2 , Melanoma , Humans , Melanoma/pathology , Neoplasm Recurrence, Local , Proto-Oncogene Proteins B-raf , Receptors, Mitogen/chemistry , Tumor Microenvironment
3.
Cell Mol Gastroenterol Hepatol ; 13(1): 173-191, 2022.
Article in English | MEDLINE | ID: mdl-34411785

ABSTRACT

BACKGROUND & AIMS: Spleen tyrosine kinase (SYK) signaling pathway regulates critical processes in innate immunity, but its role in parenchymal cells remains elusive in chronic liver diseases. We investigate the relative contribution of SYK and its substrate c-Abl Src homology 3 domain-binding protein-2 (3BP2) in both myeloid cells and hepatocytes in the onset of metabolic steatohepatitis. METHODS: Hepatic SYK-3BP2 pathway was evaluated in mouse models of metabolic-associated fatty liver diseases (MAFLD) and in obese patients with biopsy-proven MAFLD (n = 33). Its role in liver complications was evaluated in Sh3bp2 KO and myeloid-specific Syk KO mice challenged with methionine and choline deficient diet and in homozygous Sh3bp2KI/KI mice with and without SYK expression in myeloid cells. RESULTS: Here we report that hepatic expression of 3BP2 and SYK correlated with metabolic steatohepatitis severity in mice. 3BP2 deficiency and SYK deletion in myeloid cells mediated the same protective effects on liver inflammation, injury, and fibrosis priming upon diet-induced steatohepatitis. In primary hepatocytes, the targeting of 3BP2 or SYK strongly decreased the lipopolysaccharide-mediated inflammatory mediator expression and 3BP2-regulated SYK expression. In homozygous Sh3bp2KI/KI mice, the chronic inflammation mediated by the proteasome-resistant 3BP2 mutant promoted severe hepatitis and liver fibrosis with augmented liver SYK expression. In these mice, the deletion of SYK in myeloid cells was sufficient to prevent these liver lesions. The hepatic expression of SYK is also up-regulated with metabolic steatohepatitis and correlates with liver macrophages in biopsy-proven MAFLD patients. CONCLUSIONS: Collectively, these data suggest an important role for the SYK-3BP2 pathway in the pathogenesis of chronic liver inflammatory diseases and highlight its targeting in hepatocytes and myeloid cells as a potential strategy to treat metabolic steatohepatitis.


Subject(s)
Fatty Liver , Virulence Factors , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Humans , Mice , Myeloid Cells/metabolism , Signal Transduction , Syk Kinase/metabolism
4.
J Gen Virol ; 101(8): 863-872, 2020 08.
Article in English | MEDLINE | ID: mdl-32510303

ABSTRACT

Molluscum contagiosum virus (MCV) is a common cause of benign skin lesions in young children and currently the only endemic human poxvirus. Following the infection of primary keratinocytes in the epidermis, MCV induces the proliferation of infected cells and this results in the production of wart-like growths. Full productive infection is observed only after the infected cells differentiate. During this prolonged replication cycle the virus must avoid elimination by the host immune system. We therefore sought to investigate the function of the two major histocompatibility complex class-I-related genes encoded by the MCV genes mc033 and mc080. Following insertion into a replication-deficient adenovirus vector, codon-optimized versions of mc033 and mc080 were expressed as endoglycosidase-sensitive glycoproteins that localized primarily in the endoplasmic reticulum. MC080, but not MC033, downregulated cell-surface expression of endogenous classical human leucocyte antigen (HLA) class I and non-classical HLA-E by a transporter associated with antigen processing (TAP)-independent mechanism. MC080 exhibited a capacity to inhibit or activate NK cells in autologous assays in a donor-specific manner. MC080 consistently inhibited antigen-specific T cells being activated by peptide-pulsed targets. We therefore propose that MC080 acts to promote evasion of HLA-I-restricted cytotoxic T cells.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Down-Regulation/immunology , Histocompatibility Antigens Class I/immunology , Immune Evasion/immunology , Killer Cells, Natural/immunology , Molluscum contagiosum virus/immunology , Antigen Presentation/immunology , Cell Line , Endoplasmic Reticulum/immunology , Host-Pathogen Interactions/immunology , Humans , Keratinocytes/immunology , T-Lymphocytes, Cytotoxic/immunology , Viral Proteins/immunology
5.
Cancer Res ; 80(10): 1927-1941, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32179513

ABSTRACT

Aberrant extracellular matrix (ECM) deposition and stiffening is a physical hallmark of several solid cancers and is associated with therapy failure. BRAF-mutant melanomas treated with BRAF and MEK inhibitors almost invariably develop resistance that is frequently associated with transcriptional reprogramming and a de-differentiated cell state. Melanoma cells secrete their own ECM proteins, an event that is promoted by oncogenic BRAF inhibition. Yet, the contribution of cancer cell-derived ECM and tumor mechanics to drug adaptation and therapy resistance remains poorly understood. Here, we show that melanoma cells can adapt to targeted therapies through a mechanosignaling loop involving the autocrine remodeling of a drug-protective ECM. Analyses revealed that therapy-resistant cells associated with a mesenchymal dedifferentiated state displayed elevated responsiveness to collagen stiffening and force-mediated ECM remodeling through activation of actin-dependent mechanosensors Yes-associated protein (YAP) and myocardin-related transcription factor (MRTF). Short-term inhibition of MAPK pathway also induced mechanosignaling associated with deposition and remodeling of an aligned fibrillar matrix. This provided a favored ECM reorganization that promoted tolerance to BRAF inhibition in a YAP- and MRTF-dependent manner. Matrix remodeling and tumor stiffening were also observed in vivo upon exposure of BRAF-mutant melanoma cell lines or patient-derived xenograft models to MAPK pathway inhibition. Importantly, pharmacologic targeting of YAP reversed treatment-induced excessive collagen deposition, leading to enhancement of BRAF inhibitor efficacy. We conclude that MAPK pathway targeting therapies mechanically reprogram melanoma cells to confer a drug-protective matrix environment. Preventing melanoma cell mechanical reprogramming might be a promising therapeutic strategy for patients on targeted therapies. SIGNIFICANCE: These findings reveal a biomechanical adaptation of melanoma cells to oncogenic BRAF pathway inhibition, which fuels a YAP/MRTF-dependent feed-forward loop associated with tumor stiffening, mechanosensing, and therapy resistance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/10/1927/F1.large.jpg.


Subject(s)
Drug Resistance, Neoplasm/physiology , Extracellular Matrix/pathology , MAP Kinase Signaling System/physiology , Melanoma/pathology , Animals , Cell Line, Tumor , Extracellular Matrix/drug effects , Humans , Melanoma/genetics , Mice , Mice, Nude , Mutation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Tumor Microenvironment/drug effects , Tumor Microenvironment/physiology , Xenograft Model Antitumor Assays
7.
Nat Commun ; 6: 6993, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25925867

ABSTRACT

Disruption of the endothelial barrier by tumour-derived secreted factors is a critical step in cancer cell extravasation and metastasis. Here, by comparative proteomic analysis of melanoma secretomes, we identify the matricellular protein SPARC as a novel tumour-derived vascular permeability factor. SPARC deficiency abrogates tumour-initiated permeability of lung capillaries and prevents extravasation, whereas SPARC overexpression enhances vascular leakiness, extravasation and lung metastasis. SPARC-induced paracellular permeability is dependent on the endothelial VCAM1 receptor and p38 MAPK signalling. Blocking VCAM1 impedes melanoma-induced endothelial permeability and extravasation. The clinical relevance of our findings is highlighted by high levels of SPARC detected in tumour from human pulmonary melanoma lesions. Our study establishes tumour-produced SPARC and VCAM1 as regulators of cancer extravasation, revealing a novel targetable interaction for prevention of metastasis.


Subject(s)
Endothelium, Vascular/metabolism , Melanoma/metabolism , Neoplasm Metastasis , Osteonectin/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Animals , Capillary Permeability , Case-Control Studies , Cell Line, Tumor , Female , Human Umbilical Vein Endothelial Cells , Humans , Lung Neoplasms/secondary , MAP Kinase Signaling System , Melanoma/pathology , Mice, Nude , Paracrine Communication
8.
J Clin Invest ; 125(4): 1396-400, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25705883

ABSTRACT

Cherubism is a rare autoinflammatory bone disorder that is associated with point mutations in the SH3-domain binding protein 2 (SH3BP2) gene, which encodes the adapter protein 3BP2. Individuals with cherubism present with symmetrical fibro-osseous lesions of the jaw, which are attributed to exacerbated osteoclast activation and defective osteoblast differentiation. Although it is a dominant trait in humans, cherubism appears to be recessively transmitted in mice, suggesting the existence of additional factors in the pathogenesis of cherubism. Here, we report that macrophages from 3BP2-deficient mice exhibited dramatically reduced inflammatory responses to microbial challenge and reduced phagocytosis. 3BP2 was necessary for LPS-induced activation of signaling pathways involved in macrophage function, including SRC, VAV1, p38MAPK, IKKα/ß, RAC, and actin polymerization pathways. Conversely, we demonstrated that the presence of a single Sh3bp2 cherubic allele and pathogen-associated molecular pattern (PAMP) stimulation had a strong cooperative effect on macrophage activation and inflammatory responses in mice. Together, the results from our study in murine genetic models support the notion that infection may represent a driver event in the etiology of cherubism in humans and suggest limiting inflammation in affected individuals may reduce manifestation of cherubic lesions.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/physiology , Cherubism/genetics , Inflammation/physiopathology , Macrophage Activation/physiology , Mutation, Missense , Point Mutation , Actins/chemistry , Adaptor Proteins, Signal Transducing/deficiency , Adoptive Transfer , Amino Acid Substitution , Animals , Cytokines/metabolism , Disease Models, Animal , Heterozygote , Humans , Inflammation/microbiology , Lipopolysaccharides , Macrophages, Peritoneal/transplantation , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutagenesis, Site-Directed , Osteoclasts/metabolism , Osteoclasts/pathology , Phagocytosis/physiology , Toll-Like Receptor 4/drug effects , Toll-Like Receptor 4/physiology
9.
Cell Host Microbe ; 16(2): 201-214, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-25121749

ABSTRACT

Immune evasion genes help human cytomegalovirus (HCMV) establish lifelong persistence. Without immune pressure, laboratory-adapted HCMV strains have undergone genetic alterations. Among these, the deletion of the UL/b' domain is associated with loss of virulence. In a screen of UL/b', we identified pUL135 as a protein responsible for the characteristic cytopathic effect of clinical HCMV strains that also protected from natural killer (NK) and T cell attack. pUL135 interacted directly with abl interactor 1 (ABI1) and ABI2 to recruit the WAVE2 regulatory complex to the plasma membrane, remodel the actin cytoskeleton and dramatically reduce the efficiency of immune synapse (IS) formation. An intimate association between F-actin filaments in target cells and the IS was dispelled by pUL135 expression. Thus, F-actin in target cells plays a critical role in synaptogenesis, and this can be exploited by pathogens to protect against cytotoxic immune effector cells. An independent interaction between pUL135 and talin disrupted cell contacts with the extracellular matrix.


Subject(s)
Actin Cytoskeleton/metabolism , Cytomegalovirus/immunology , Viral Proteins/physiology , Adaptor Proteins, Signal Transducing/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Cytoskeletal Proteins/metabolism , Host-Pathogen Interactions , Humans , Immunological Synapses/virology , Immunomodulation , Killer Cells, Natural/immunology , Killer Cells, Natural/virology , Talin/metabolism , Wiskott-Aldrich Syndrome Protein Family/metabolism
10.
PLoS Pathog ; 10(5): e1004058, 2014 May.
Article in English | MEDLINE | ID: mdl-24787765

ABSTRACT

NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αß and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1-6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12-US21; a genetic arrangement, which is suggestive of an 'accordion' expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family.


Subject(s)
Cytomegalovirus , Histocompatibility Antigens Class I/metabolism , Immune Evasion , Killer Cells, Natural/immunology , Lysosomes/metabolism , Proteolysis , Viral Proteins/physiology , Adult , Bacterial Proteins/metabolism , Cells, Cultured , Cytomegalovirus/immunology , Cytomegalovirus/pathogenicity , Enzyme Inhibitors/pharmacology , Humans , Immune Evasion/drug effects , Killer Cells, Natural/drug effects , Leupeptins/pharmacology , Luminescent Proteins/metabolism , Lysosomes/drug effects , Macrolides/pharmacology , NK Cell Lectin-Like Receptor Subfamily K/physiology , Proteolysis/drug effects , Recombinant Proteins/metabolism
11.
J Gen Virol ; 95(Pt 4): 933-939, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24394698

ABSTRACT

Human cytomegalovirus (HCMV) is known to evade extrinsic pro-apoptotic pathways not only by downregulating cell surface expression of the death receptors TNFR1, TRAIL receptor 1 (TNFRSF10A) and TRAIL receptor 2 (TNFRSF10B), but also by impeding downstream signalling events. Fas (CD95/APO-1/TNFRSF6) also plays a prominent role in apoptotic clearance of virus-infected cells, so its fate in HCMV-infected cells needs to be addressed. Here, we show that cell surface expression of Fas was suppressed in HCMV-infected fibroblasts from 24 h onwards through the late phase of productive infection, and was dependent on de novo virus-encoded gene expression but not virus DNA replication. Significant levels of the fully glycosylated (endoglycosidase-H-resistant) Fas were retained within HCMV-infected cells throughout the infection within intracellular membranous structures. HCMV infection provided cells with a high level of protection against Fas-mediated apoptosis. Downregulation of Fas was observed with HCMV strains AD169, FIX, Merlin and TB40.


Subject(s)
Cytomegalovirus/physiology , Host-Pathogen Interactions , Immune Evasion , fas Receptor/antagonists & inhibitors , fas Receptor/immunology , Cells, Cultured , Fibroblasts/virology , Humans
12.
J Immunol ; 188(6): 2794-804, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22345649

ABSTRACT

Human CMV (HCMV)-encoded NK cell-evasion functions include an MHC class I homolog (UL18) with high affinity for the leukocyte inhibitory receptor-1 (CD85j, ILT2, or LILRB1) and a signal peptide (SP(UL40)) that acts by upregulating cell surface expression of HLA-E. Detailed characterization of SP(UL40) revealed that the N-terminal 14 aa residues bestowed TAP-independent upregulation of HLA-E, whereas C region sequences delayed processing of SP(UL40) by a signal peptide peptidase-type intramembrane protease. Most significantly, the consensus HLA-E-binding epitope within SP(UL40) was shown to promote cell surface expression of both HLA-E and gpUL18. UL40 was found to possess two transcription start sites, with utilization of the downstream site resulting in translation being initiated within the HLA-E-binding epitope (P2). Remarkably, this truncated SP(UL40) was functional and retained the capacity to upregulate gpUL18 but not HLA-E. Thus, our findings identify an elegant mechanism by which an HCMV signal peptide differentially regulates two distinct NK cell-evasion pathways. Moreover, we describe a natural SP(UL40) mutant that provides a clear example of an HCMV clinical virus with a defect in an NK cell-evasion function and exemplifies issues that confront the virus when adapting to immunogenetic diversity in the host.


Subject(s)
Capsid Proteins/metabolism , Histocompatibility Antigens Class I/metabolism , Immune Evasion/immunology , Killer Cells, Natural/immunology , Viral Proteins/metabolism , Amino Acid Sequence , Blotting, Northern , Blotting, Western , Capsid Proteins/genetics , Capsid Proteins/immunology , Cell Membrane/immunology , Cell Membrane/metabolism , Cell Separation , Cytomegalovirus/genetics , Cytomegalovirus/immunology , Cytomegalovirus/metabolism , Cytomegalovirus Infections , Flow Cytometry , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Killer Cells, Natural/metabolism , Molecular Sequence Data , Reverse Transcriptase Polymerase Chain Reaction , Viral Proteins/genetics , Viral Proteins/immunology , HLA-E Antigens
13.
J Biol Chem ; 285(27): 20952-63, 2010 Jul 02.
Article in English | MEDLINE | ID: mdl-20439986

ABSTRACT

The adapter protein 3BP2 (also known as SH3BP2 and Abl SH3-binding protein 2) has been involved in leukocyte signaling and activation downstream immunoreceptors. Genetic studies have further associated 3BP2 mutations to the human disease cherubism and to inflammation and bone dysfunction in mouse. However, how wild type 3BP2 functions in macrophage differentiation remains poorly understood. In this study, using small interfering RNA-mediated silencing of 3BP2 in the RAW264.7 monocytic cell line, we show that 3BP2 was required for receptor activator of NFkappaB ligand (RANKL)-induced differentiation of RAW264.7 cells into multinucleated mature osteoclasts but not for granulocyte macrophage-colony stimulating factor/interleukin-4-induced differentiation into dendritic cells. 3BP2 silencing was associated with impaired activation of multiple signaling events downstream of RANK, including actin reorganization; Src, ERK, and JNK phosphorylation; and up-regulation of osteoclastogenic factors. In addition, 3BP2 knockdown cells induced to osteoclast by RANKL displayed a reduced increase of Src and nuclear factor of activated T cells (NFATc1) mRNA and protein expression. Importantly, 3BP2 interacted with Src, Syk, Vav, and Cbl in monocytic cells, and the introduction of constitutively active mutants of Src and NFATc1 in 3BP2-deficient cells restored osteoclast differentiation. Finally, the expression of a 3BP2 cherubism mutant was found to promote increased Src activity and NFAT-dependent osteoclast formation. Together, this study demonstrates that wild type 3BP2 is a key regulator of RANK-mediated macrophage differentiation into osteoclast through Src and NFATc1 activation.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Cell Differentiation/physiology , Osteoclasts/cytology , RANK Ligand/physiology , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Animals , Base Sequence , Cell Line , DNA Primers , Genetic Complementation Test , Humans , Macrophages/cytology , Macrophages/physiology , Mice , Monocytes/cytology , Monocytes/physiology , Osteoclasts/physiology , Polymerase Chain Reaction , RNA, Antisense/genetics , Transfection
14.
J Gen Virol ; 91(Pt 8): 2034-2039, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20410314

ABSTRACT

Human cytomegalovirus (HCMV) UL141 induces protection against natural killer cell-mediated cytolysis by downregulating cell surface expression of CD155 (nectin-like molecule 5; poliovirus receptor), a ligand for the activating receptor DNAM-1 (CD226). However, DNAM-1 is also recognized to bind a second ligand, CD112 (nectin-2). We now show that HCMV targets CD112 for proteasome-mediated degradation by 48 h post-infection, thus removing both activating ligands for DNAM-1 from the cell surface during productive infection. Significantly, cell surface expression of both CD112 and CD155 was restored when UL141 was deleted from the HCMV genome. While gpUL141 alone is sufficient to mediate retention of CD155 in the endoplasmic reticulum, UL141 requires assistance from additional HCMV-encoded functions to suppress expression of CD112.


Subject(s)
Cytomegalovirus/immunology , Cytomegalovirus/pathogenicity , Immune Tolerance , Interleukin-2 Receptor beta Subunit/antagonists & inhibitors , Killer Cells, Natural/immunology , Viral Proteins/physiology , Virulence Factors/physiology , Cells, Cultured , Gene Deletion , Humans , Receptors, Virus/antagonists & inhibitors , Viral Proteins/genetics , Viral Proteins/immunology , Virulence Factors/immunology
15.
J Virol ; 82(9): 4585-94, 2008 May.
Article in English | MEDLINE | ID: mdl-18287244

ABSTRACT

The adenovirus (Ad) early transcription unit 3 (E3) encodes multiple immunosubversive functions that are presumed to facilitate the establishment and persistence of infection. Indeed, the capacity of E3/19K to inhibit transport of HLA class I (HLA-I) to the cell surface, thereby preventing peptide presentation to CD8(+) T cells, has long been recognized as a paradigm for viral immune evasion. However, HLA-I downregulation has the potential to render Ad-infected cells vulnerable to natural killer (NK) cell recognition. Furthermore, expression of the immediate-early Ad gene E1A is associated with efficient induction of ligands for the key NK cell-activating receptor NKG2D. Here we show that while infection with wild-type Ad enhances synthesis of the NKG2D ligands, major histocompatibility complex class I chain-related proteins A and B (MICA and MICB), their expression on the cell surface is actively suppressed. Both MICA and MICB are retained within the endoplasmic reticulum as immature endoglycosidase H-sensitive forms. By analyzing a range of cell lines and viruses carrying mutated versions of the E3 gene region, E3/19K was identified as the gene responsible for this activity. The structural requirements within E3/19K necessary to sequester MICA/B and HLA-I are similar. In functional assays, deletion of E3/19K rendered Ad-infected cells more sensitive to NK cell recognition. We report the first NK evasion function in the Adenoviridae and describe a novel function for E3/19K. Thus, E3/19K has a dual function: inhibition of T-cell recognition and NK cell activation.


Subject(s)
Adenovirus E3 Proteins/immunology , Adenoviruses, Human/immunology , Cell Compartmentation , Histocompatibility Antigens Class I/immunology , Killer Cells, Natural/immunology , Receptors, Immunologic/immunology , Adenoviruses, Human/chemistry , Gene Expression , Immunity , Killer Cells, Natural/virology , Ligands , Receptors, Natural Killer Cell , T-Lymphocytes/immunology
16.
J Clin Virol ; 41(3): 206-12, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18069056

ABSTRACT

Human cytomegalovirus (HCMV) causes lifelong, persistent infections and its survival is under intense, continuous selective pressure from the immune system. A key aspect of HCMV's capacity for survival lies in immune avoidance. In this context, cells undergoing productive infection exhibit remarkable resistance to natural killer (NK) cell-mediated cytolysis in vitro. To date, six genes encoding proteins (UL16, UL18, UL40, UL83, UL141 and UL142) and one encoding a microRNA (miR-UL112) have been identified as capable of suppressing NK cell recognition. Even though HCMV infection efficiently activates expression of ligands for the NK cell activating receptor NKG2D, at least three functions (UL16, UL142 and miR-UL112) act in concert to suppress presentation of these ligands on the cell surface. Although HCMV downregulates expression of endogenous MHC-I, it encodes an MHC-I homologue (UL18) and also upregulates the expression of cellular HLA-E through the action of UL40. The disruption of normal intercellular connections exposes ligands for NK cell activating receptors on the cell surface, notably CD155. HCMV overcomes this vulnerability by encoding a function (UL141) that acts post-translationally to suppress cell surface expression of CD155. The mechanisms by which HCMV systematically evades (or, more properly, modulates) NK cell recognition constitutes an area of growing understanding that is enhancing our appreciation of the basic mechanisms of NK cell function in humans.


Subject(s)
Cytomegalovirus/pathogenicity , Killer Cells, Natural/immunology , GPI-Linked Proteins , Gene Expression Regulation , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
17.
J Immunol ; 178(7): 4473-81, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17372005

ABSTRACT

The inhibitory leukocyte Ig-like receptor 1 (LIR-1, also known as ILT2, CD85j, or LILRB1) was identified by its high affinity for the human CMV (HCMV) MHC class I homolog gpUL18. The role of this LIR-1-gpUL18 interaction in modulating NK recognition during HCMV infection has previously not been clearly defined. In this study, LIR-1(+) NKL cell-mediated cytotoxicity was shown to be inhibited by transduction of targets with a replication-deficient adenovirus vector encoding UL18 (RAd-UL18). Fibroblasts infected with an HCMV UL18 mutant (DeltaUL18) also exhibited enhanced susceptibility to NKL killing relative to cells infected with the parental virus. In additional cytolysis assays, UL18-mediated protection was also evident in the context of adenovirus vector transduction and HCMV infection of autologous fibroblast targets using IFN-alpha-activated NK bulk cultures derived from a donor with a high frequency of LIR-1(+) NK cells. A single LIR-1(high) NK clone derived from this donor was inhibited by UL18, while 3 of 24 clones were activated. CD107 mobilization assays revealed that LIR-1(+) NK cells were consistently inhibited by UL18 in all tested donors, but this effect was often masked in the global response by UL18-mediated activation of a subset of LIR-1(-) NK cells. Although Ab-blocking experiments support UL18 inhibition being induced by a direct interaction with LIR-1, the UL18-mediated activation is LIR-1 independent.


Subject(s)
Capsid Proteins/immunology , Histocompatibility Antigens Class I/immunology , Killer Cells, Natural/immunology , Receptors, Immunologic/antagonists & inhibitors , Adenoviridae/genetics , Antigens, CD/analysis , Antigens, CD/immunology , Capsid Proteins/genetics , Cells, Cultured , Cytotoxicity, Immunologic , Genetic Vectors/genetics , Histocompatibility Antigens Class I/genetics , Humans , Killer Cells, Natural/chemistry , Leukocyte Immunoglobulin-like Receptor B1 , Lymphocyte Activation , Receptors, Immunologic/analysis , Receptors, Immunologic/immunology , Sequence Deletion
18.
J Immunol ; 175(12): 7791-5, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16339512

ABSTRACT

Human NK cells and subsets of T cells or NKT cells express the orphan C-type lectin receptor CD161 (NKR-P1A) of unknown function. In contrast to rodents that possess several NKR-P1 genes coding for either activating or inhibitory receptors, the nature of signals delivered by the single human NKR-P1A receptor is still to be clarified. In this article, we show that the lectin-like transcript 1 (LLT1) molecule is a ligand for the CD161 receptor. Engagement of CD161 on NK cells with LLT1 expressed on target cells inhibited NK cell-mediated cytotoxicity and IFN-gamma secretion. Conversely, LLT1/CD161 interaction in the presence of a TCR signal enhanced IFN-gamma production by T cells. These findings identify a novel ligand/receptor pair that differentially regulate NK and T cell functions.


Subject(s)
Antigens, Surface/physiology , Lectins, C-Type/metabolism , Lectins, C-Type/physiology , Receptors, Cell Surface/metabolism , Antigens, Surface/immunology , Antigens, Surface/metabolism , CD3 Complex/metabolism , Cytotoxicity, Immunologic , Humans , Interferon-gamma/biosynthesis , Killer Cells, Natural/immunology , Lectins, C-Type/immunology , Ligands , NK Cell Lectin-Like Receptor Subfamily B , Protein Binding , Receptors, Antigen, T-Cell/metabolism , Receptors, Cell Surface/immunology , Signal Transduction , T-Lymphocytes/metabolism
19.
J Virol ; 77(12): 7139-42, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12768035

ABSTRACT

The impact of natural polymorphism in a cytomegalovirus-dominant HLA-B(*)1801-restricted epitope, IE1(199-206), on the specific responses of T-cell clones was assessed by measuring their cytolytic activity against target cells expressing mutated recombinant IE1 proteins. Our results suggest an in vivo selection of T lymphocytes that cross-react with multiple IE1 variants.


Subject(s)
B-Lymphocytes/immunology , HLA-B Antigens/metabolism , Immediate-Early Proteins/immunology , Immediate-Early Proteins/metabolism , T-Lymphocytes, Cytotoxic/immunology , Viral Proteins , Amino Acid Sequence , Cell Line , Cross Reactions , Cytomegalovirus/immunology , Genetic Variation , Humans , Immediate-Early Proteins/genetics , Immunodominant Epitopes , Lymphocyte Activation , Molecular Sequence Data , Mutagenesis, Site-Directed , Polymorphism, Genetic
20.
J Immunol ; 170(4): 2030-6, 2003 Feb 15.
Article in English | MEDLINE | ID: mdl-12574373

ABSTRACT

Cytotoxic T lymphocytes play a central role in the control of persistent human CMV (HCMV) infection and reactivation. In healthy virus carriers, the specific CD8(+) CTL response is almost entirely directed against the virion tegument protein pp65 and/or the 72-kDa major immediate early protein, IE1. Studies that included a large panel of HCMV(+) donors suggested that immunorelevance of pp65 and IE1 was directly related with individual HLA haplotype difference. Nevertheless, there are no data on the incidence of HCMV natural polymorphism on virus-specific CTL responses. To assess the impact of IE1 polymorphism on CTL response, we have sequenced in 103 clinical isolates the DNA region corresponding to IE1(315-324), an immunodominant epitope presented by HLA-A*0201 molecules. Seven peptidic variants were found with extensive difference in their frequencies. The response of four HLA-A*0201-restricted anti-IE1 T lymphocyte clones, which were previously generated from one donor against autologous B lymphoblastoid cells expressing a recombinant clinical variant of IE1, was then evaluated using target cells loaded with mutant synthetic peptides or expressing rIE1 variants. One of four clones, which have been sorted 19 times among 22 clones targeted against IE1(315-324), recognized six of the seven tested variant epitopes. All three other clones showed distinct reactivity patterns to target cells loaded with the different mutant peptides or expressing IE1 variants. Therefore, in the HLA-A2 context, clonal expansions of anti-IE1 memory CTLs may confer a protection against HCMV successive infections and reactivations by killing cells presenting most of the naturally occurring IE1(315-324) epitope variants.


Subject(s)
Cytomegalovirus/immunology , Epitopes, T-Lymphocyte/immunology , HLA-A2 Antigen/immunology , Immediate-Early Proteins/genetics , Immunodominant Epitopes/immunology , Peptide Fragments/immunology , Polymorphism, Genetic/physiology , T-Lymphocyte Subsets/immunology , Viral Proteins , Cell Line , Cell Line, Transformed , Clone Cells , Cytomegalovirus/isolation & purification , Cytotoxicity, Immunologic/genetics , Epitopes, T-Lymphocyte/genetics , HLA-A Antigens/immunology , Humans , Immediate-Early Proteins/immunology , Immunodominant Epitopes/genetics , Lymphocyte Activation/genetics , Peptide Fragments/chemical synthesis , Peptide Fragments/genetics , T-Lymphocytes, Cytotoxic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...