Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Omega ; 7(21): 17741-17755, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35664576

ABSTRACT

Pd-based catalysts consisting of Pd nanoparticles on nitrogen-doped carbon quantum dots (N-CQDs) modified silica (SiO2) and reduced graphene oxide have been synthesized through reduction for use as catalysts for improved formic acid oxidation. The structure, morphology, chemical composition, functional groups, and porosity of the synthesized catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, and Brunauer-Emmett-Teller (BET) spectroscopy, respectively. Their electrocatalytic activities were also evaluated by electrochemical measurements. The differences in the average particle sizes found for Pd/N-CQDs-SiO2-rGO, Pd/N-CQDs-rGO, and Pd/rGO were 4.81, 5.56, and 6.31 nm, respectively. It was also found that the Pd/xN-CQDs-SiO2-yrGO composite catalysts (where x and y is 1 to 4) can significantly improve the activity and stability toward formic acid electrooxidation compared with Pd/rGO and commercial Pt/C. The mass activities of Pd/N-CQDs-SiO2-rGO, Pd/N-CQDs-rGO, and Pd/rGO were 951.4, 607.8, and 157.6 mA g-1, respectively, which was ca. 6-7 times compared with Pd/rGO and approximately 3-4 times compared with commercial Pt/C. With low potential for CO oxidation and high current intensity, the composites of rGO, SiO2, and N-CQDs into Pd-based catalysts improved the catalytic activity of the prepared catalyst for the oxidation of formic acid in acidic media. The value of the Tafel slope designated that the chief path of the prepared catalysts is the dehydrogenation process. These prepared catalysts exhibit promise toward the development of high-performance Pd-based electrocatalysts for formic acid oxidation.

2.
Chem Pharm Bull (Tokyo) ; 69(3): 253-257, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33431728

ABSTRACT

A series of 3-substituted-2-hydroxy-1,4-naphthoquinone derivatives with a variety of side chains were successfully synthesized by Mannich reaction of 2-hydroxy-1,4-naphthoquinone (lawsone) with selected amines and aldehydes. All substances (1-16) were evaluated for in-vitro antimalarial activity against strains of Plasmodium falciparum by microculture radioisotope technique. Bioassay data revealed that ten derivatives (1-8, 11 and 13) displayed significantly good activity with values of IC50 ranging from 0.77 to 4.05 µg/mL. The best biological profile (IC50 = 0.77 µg/mL) was observed in compound 1, possessing a n-butyl substituted aminomethyl group. Experimental results support the potential use of our active Mannich components as promising antimalarial agents in the fight against malaria infections and multidrug resistance problems.


Subject(s)
Antimalarials/chemical synthesis , Malaria/drug therapy , Naphthoquinones/chemical synthesis , Plasmodium falciparum/drug effects , Antimalarials/pharmacology , Drug Evaluation, Preclinical , Drug Resistance, Multiple , Humans , Naphthoquinones/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL