Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Circ Res ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962864

ABSTRACT

BACKGROUND: How the sarcomeric complex is continuously turned over in long-living cardiomyocytes is unclear. According to the prevailing model of sarcomere maintenance, sarcomeres are maintained by cytoplasmic soluble protein pools with free recycling between pools and sarcomeres. METHODS: We imaged and quantified the turnover of expressed and endogenous sarcomeric proteins, including the giant protein titin, in cardiomyocytes in culture and in vivo, at the single cell and at the single sarcomere level using pulse-chase labeling of Halo-tagged proteins with covalent ligands. RESULTS: We disprove the prevailing protein pool model and instead show an ordered mechanism in which only newly translated proteins enter the sarcomeric complex while older ones are removed and degraded. We also show that degradation is independent of protein age and that proteolytic extraction is a rate-limiting step in the turnover. We show that replacement of sarcomeric proteins occurs at a similar rate within cells and across the heart and is slower in adult cells. CONCLUSIONS: Our findings establish a unidirectional replacement model for cardiac sarcomeres subunit replacement and identify their turnover principles.

3.
bioRxiv ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38464269

ABSTRACT

In the last decade human iPSC-derived cardiomyocytes (hiPSC-CMs) proved to be valuable for cardiac disease modeling and cardiac regeneration, yet challenges with scale, quality, inter-batch consistency, and cryopreservation remain, reducing experimental reproducibility and limiting clinical translation. Here, we report a robust cardiac differentiation protocol that uses Wnt modulation and a stirred suspension bioreactor to produce on average 124 million hiPSC-CMs with >90% purity using a variety of hiPSC lines (19 differentiations; 10 iPSC lines). After controlled freeze and thaw, bioreactor-derived CMs (bCMs) showed high viability (>90%), interbatch reproducibility in cellular morphology, function, drug response and ventricular identity, which was further supported by single cell transcriptomes. bCMs on microcontact printed substrates revealed a higher degree of sarcomere maturation and viability during long-term culture compared to monolayer-derived CMs (mCMs). Moreover, functional investigation of bCMs in 3D engineered heart tissues showed earlier and stronger force production during long-term culture, and robust pacing capture up to 4 Hz when compared to mCMs. bCMs derived from this differentiation protocol will expand the applications of hiPSC-CMs by providing a reproducible, scalable, and resource efficient method to generate cardiac cells with well-characterized structural and functional properties superior to standard mCMs.

4.
bioRxiv ; 2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37131696

ABSTRACT

Understanding how the atrial and ventricular chambers of the heart maintain their distinct identity is a prerequisite for treating chamber-specific diseases. Here, we selectively inactivated the transcription factor Tbx5 in the atrial working myocardium of the neonatal mouse heart to show that it is required to maintain atrial identity. Atrial Tbx5 inactivation downregulated highly chamber specific genes such as Myl7 and Nppa , and conversely, increased the expression of ventricular identity genes including Myl2 . Using combined single nucleus transcriptome and open chromatin profiling, we assessed genomic accessibility changes underlying the altered atrial identity expression program, identifying 1846 genomic loci with greater accessibility in control atrial cardiomyocytes compared to KO aCMs. 69% of the control-enriched ATAC regions were bound by TBX5, demonstrating a role for TBX5 in maintaining atrial genomic accessibility. These regions were associated with genes that had higher expression in control aCMs compared to KO aCMs, suggesting they act as TBX5-dependent enhancers. We tested this hypothesis by analyzing enhancer chromatin looping using HiChIP and found 510 chromatin loops that were sensitive to TBX5 dosage. Of the loops enriched in control aCMs, 73.7% contained anchors in control-enriched ATAC regions. Together, these data demonstrate a genomic role for TBX5 in maintaining the atrial gene expression program by binding to atrial enhancers and preserving tissue-specific chromatin architecture of atrial enhancers.

5.
Circulation ; 147(11): 881-896, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36705030

ABSTRACT

BACKGROUND: Cardiac chamber-selective transcriptional programs underpin the structural and functional differences between atrial and ventricular cardiomyocytes (aCMs and vCMs). The mechanisms responsible for these chamber-selective transcriptional programs remain largely undefined. METHODS: We nominated candidate chamber-selective enhancers (CSEs) by determining the genome-wide occupancy of 7 key cardiac transcription factors (GATA4, MEF2A, MEF2C, NKX2-5, SRF, TBX5, TEAD1) and transcriptional coactivator P300 in atria and ventricles. Candidate enhancers were tested using an adeno-associated virus-mediated massively parallel reporter assay. Chromatin features of CSEs were evaluated by performing assay of transposase accessible chromatin sequencing and acetylation of histone H3 at lysine 27-HiChIP on aCMs and vCMs. CSE sequence requirements were determined by systematic tiling mutagenesis of 29 CSEs at 5 bp resolution. Estrogen-related receptor (ERR) function in cardiomyocytes was evaluated by Cre-loxP-mediated inactivation of ERRα and ERRγ in cardiomyocytes. RESULTS: We identified 134 066 and 97 506 regions reproducibly occupied by at least 1 transcription factor or P300, in atria or ventricles, respectively. Enhancer activities of 2639 regions bound by transcription factors or P300 were tested in aCMs and vCMs by adeno-associated virus-mediated massively parallel reporter assay. This identified 1092 active enhancers in aCMs or vCMs. Several overlapped loci associated with cardiovascular disease through genome-wide association studies, and 229 exhibited chamber-selective activity in aCMs or vCMs. Many CSEs exhibited differential chromatin accessibility between aCMs and vCMs, and CSEs were enriched for aCM- or vCM-selective acetylation of histone H3 at lysine 27-anchored loops. Tiling mutagenesis of 29 CSEs identified the binding motif of ERRα/γ as important for ventricular enhancer activity. The requirement of ERRα/γ to activate ventricular CSEs and promote vCM identity was confirmed by loss of the vCM gene profile in ERRα/γ knockout vCMs. CONCLUSIONS: We identified 229 CSEs that could be useful research tools or direct therapeutic gene expression. We showed that chamber-selective multi-transcription factor, P300 occupancy, open chromatin, and chromatin looping are predictive features of CSEs. We found that ERRα/γ are essential for maintenance of ventricular identity. Finally, our gene expression, epigenetic, 3-dimensional genome, and enhancer activity atlas provide key resources for future studies of chamber-selective gene regulation.


Subject(s)
Histones , Myocytes, Cardiac , Humans , Myocytes, Cardiac/metabolism , Histones/genetics , Histones/metabolism , Genome-Wide Association Study , Lysine/genetics , Lysine/metabolism , Promoter Regions, Genetic , Transcription Factors/genetics , Transcription Factors/metabolism , Chromatin/genetics , Chromatin/metabolism , Enhancer Elements, Genetic/genetics , Estrogens
6.
Nat Cardiovasc Res ; 2(10): 881-898, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38344303

ABSTRACT

Understanding how the atrial and ventricular heart chambers maintain distinct identities is a prerequisite for treating chamber-specific diseases. Here, we selectively knocked out (KO) the transcription factor Tbx5 in the atrial working myocardium to evaluate its requirement for atrial identity. Atrial Tbx5 inactivation downregulated atrial cardiomyocyte (aCM) selective gene expression. Using concurrent single nucleus transcriptome and open chromatin profiling, genomic accessibility differences were identified between control and Tbx5 KO aCMs, revealing that 69% of the control-enriched ATAC regions were bound by TBX5. Genes associated with these regions were downregulated in KO aCMs, suggesting they function as TBX5-dependent enhancers. Comparing enhancer chromatin looping using H3K27ac HiChIP identified 510 chromatin loops sensitive to TBX5 dosage, and 74.8% of control-enriched loops contained anchors in control-enriched ATAC regions. Together, these data demonstrate TBX5 maintains the atrial gene expression program by binding to and preserving the tissue-specific chromatin architecture of atrial enhancers.

7.
Adv Mater ; 34(47): e2207376, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36153826

ABSTRACT

Colloids, known as volume expanders, have been used as resuscitation fluids for hypovolemic shock for decades, as they increase plasma oncotic pressure and expand intravascular volume. However, recent studies show that commonly used synthetic colloids have adverse interactions with human biological systems. In this work, a low-fouling amine(N)-oxide-based zwitterionic polymer as an alternative volume expander with improved biocompatibility and efficacy is designed. It is demonstrated that the polymer possesses antifouling ability, resisting cell interaction and deposition in major organs, and is rapidly cleared via renal filtration and hepatic circulation, reducing the risk of long-term side effects. Furthermore, in vitro and in vivo studies show an absence of adverse effects on hemostasis or any acute safety risks. Finally, it is shown that, in a head-to-head comparison with existing colloids and plasma, the zwitterionic polymer serves as a more potent oncotic agent for restoring intravascular volume in a hemorrhagic shock model. The design of N-oxide-based zwitterionic polymers may lead to the development of alternative fluid therapies to treat hypovolemic shock and to improve fluid management in general.


Subject(s)
Shock, Hemorrhagic , Humans , Shock, Hemorrhagic/drug therapy , Resuscitation , Colloids , Polymers/therapeutic use , Oxides
8.
Cells ; 11(17)2022 09 02.
Article in English | MEDLINE | ID: mdl-36078153

ABSTRACT

Genetic variants in α-actinin-2 (ACTN2) are associated with several forms of (cardio)myopathy. We previously reported a heterozygous missense (c.740C>T) ACTN2 gene variant, associated with hypertrophic cardiomyopathy, and characterized by an electro-mechanical phenotype in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Here, we created with CRISPR/Cas9 genetic tools two heterozygous functional knock-out hiPSC lines with a second wild-type (ACTN2wt) and missense ACTN2 (ACTN2mut) allele, respectively. We evaluated their impact on cardiomyocyte structure and function, using a combination of different technologies, including immunofluorescence and live cell imaging, RNA-seq, and mass spectrometry. This study showed that ACTN2mut presents a higher percentage of multinucleation, protein aggregation, hypertrophy, myofibrillar disarray, and activation of both the ubiquitin-proteasome system and the autophagy-lysosomal pathway as compared to ACTN2wt in 2D-cultured hiPSC-CMs. Furthermore, the expression of ACTN2mut was associated with a marked reduction of sarcomere-associated protein levels in 2D-cultured hiPSC-CMs and force impairment in engineered heart tissues. In conclusion, our study highlights the activation of proteolytic systems in ACTN2mut hiPSC-CMs likely to cope with ACTN2 aggregation and therefore directs towards proteopathy as an additional cellular pathology caused by this ACTN2 variant, which may contribute to human ACTN2-associated cardiomyopathies.


Subject(s)
Actinin , Cardiomyopathy, Hypertrophic , Protein Aggregation, Pathological , Actinin/genetics , Actinin/metabolism , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Sarcomeres/metabolism
10.
Circulation ; 143(19): 1894-1911, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33793303

ABSTRACT

BACKGROUND: Mutations in tafazzin (TAZ), a gene required for biogenesis of cardiolipin, the signature phospholipid of the inner mitochondrial membrane, causes Barth syndrome (BTHS). Cardiomyopathy and risk of sudden cardiac death are prominent features of BTHS, but the mechanisms by which impaired cardiolipin biogenesis causes cardiac muscle weakness and arrhythmia are poorly understood. METHODS: We performed in vivo electrophysiology to define arrhythmia vulnerability in cardiac-specific TAZ knockout mice. Using cardiomyocytes derived from human induced pluripotent stem cells and cardiac-specific TAZ knockout mice as model systems, we investigated the effect of TAZ inactivation on Ca2+ handling. Through genome editing and pharmacology, we defined a molecular link between TAZ mutation and abnormal Ca2+ handling and contractility. RESULTS: A subset of mice with cardiac-specific TAZ inactivation developed arrhythmias, including bidirectional ventricular tachycardia, atrial tachycardia, and complete atrioventricular block. Compared with wild-type controls, BTHS-induced pluripotent stem cell-derived cardiomyocytes had increased diastolic Ca2+ and decreased Ca2+ transient amplitude. BTHS-induced pluripotent stem cell-derived cardiomyocytes had higher levels of mitochondrial and cellular reactive oxygen species than wild-type controls, which activated CaMKII (Ca2+/calmodulin-dependent protein kinase II). Activated CaMKII phosphorylated the RYR2 (ryanodine receptor 2) on serine 2814, increasing Ca2+ leak through RYR2. Inhibition of this reactive oxygen species-CaMKII-RYR2 pathway through pharmacological inhibitors or genome editing normalized aberrant Ca2+ handling in BTHS-induced pluripotent stem cell-derived cardiomyocytes and improved their contractile function. Murine Taz knockout cardiomyocytes also exhibited elevated diastolic Ca2+ and decreased Ca2+ transient amplitude. These abnormalities were ameliorated by Ca2+/calmodulin-dependent protein kinase II or reactive oxygen species inhibition. CONCLUSIONS: This study identified a molecular pathway that links TAZ mutation with abnormal Ca2+ handling and decreased cardiomyocyte contractility. This pathway may offer therapeutic opportunities to treat BTHS and potentially other diseases with elevated mitochondrial reactive oxygen species production.


Subject(s)
Barth Syndrome/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium/metabolism , Reactive Oxygen Species/metabolism , Animals , Barth Syndrome/physiopathology , Humans , Mice , Mice, Knockout
11.
Cardiovasc Res ; 116(9): 1635-1650, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32321160

ABSTRACT

Inherited arrhythmias are disorders caused by one or more genetic mutations that increase the risk of arrhythmia, which result in life-long risk of sudden death. These mutations either primarily perturb electrophysiological homeostasis (e.g. long QT syndrome and catecholaminergic polymorphic ventricular tachycardia), cause structural disease that is closely associated with severe arrhythmias (e.g. hypertrophic cardiomyopathy), or cause a high propensity for arrhythmia in combination with altered myocardial structure and function (e.g. arrhythmogenic cardiomyopathy). Currently available therapies offer incomplete protection from arrhythmia and fail to alter disease progression. Recent studies suggest that gene therapies may provide potent, molecularly targeted options for at least a subset of inherited arrhythmias. Here, we provide an overview of gene therapy strategies, and review recent studies on gene therapies for catecholaminergic polymorphic ventricular tachycardia and hypertrophic cardiomyopathy caused by MYBPC3 mutations.


Subject(s)
Action Potentials , Arrhythmias, Cardiac/therapy , Genetic Therapy , Heart Rate , Action Potentials/genetics , Animals , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/physiopathology , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/physiopathology , Cardiomyopathy, Hypertrophic/therapy , Carrier Proteins/genetics , Genetic Predisposition to Disease , Genetic Therapy/adverse effects , Heart Rate/genetics , Humans , Mutation , Phenotype , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/physiopathology , Tachycardia, Ventricular/therapy , Treatment Outcome
12.
Cells ; 9(1)2020 01 20.
Article in English | MEDLINE | ID: mdl-31968557

ABSTRACT

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) represent an unlimited source of human CMs that could be a standard tool in drug research. However, there is concern whether hiPSC-CMs express all cardiac ion channels at physiological level and whether they might express non-cardiac ion channels. In a control hiPSC line, we found large, "noisy" outward K+ currents, when we measured outward potassium currents in isolated hiPSC-CMs. Currents were sensitive to iberiotoxin, the selective blocker of big conductance Ca2+-activated K+ current (IBK,Ca). Seven of 16 individual differentiation batches showed a strong initial repolarization in the action potentials (AP) recorded from engineered heart tissue (EHT) followed by very early afterdepolarizations, sometimes even with consecutive oscillations. Iberiotoxin stopped oscillations and normalized AP shape, but had no effect in other EHTs without oscillations or in human left ventricular tissue (LV). Expression levels of the alpha-subunit (KCa1.1) of the BKCa correlated with the presence of oscillations in hiPSC-CMs and was not detectable in LV. Taken together, individual batches of hiPSC-CMs can express sarcolemmal ion channels that are otherwise not found in the human heart, resulting in oscillating afterdepolarizations in the AP. HiPSC-CMs should be screened for expression of non-cardiac ion channels before being applied to drug research.


Subject(s)
Action Potentials , Artifacts , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Potassium Channels, Calcium-Activated/metabolism , Action Potentials/physiology , Adult , Cell Line , Computer Simulation , Humans , Peptides/toxicity , Tissue Engineering
13.
Cardiovasc Res ; 116(8): 1487-1499, 2020 07 01.
Article in English | MEDLINE | ID: mdl-31598634

ABSTRACT

AIMS: Chronic tachypacing is commonly used in animals to induce cardiac dysfunction and to study mechanisms of heart failure and arrhythmogenesis. Human induced pluripotent stem cells (hiPSC) may replace animal models to overcome species differences and ethical problems. Here, 3D engineered heart tissue (EHT) was used to investigate the effect of chronic tachypacing on hiPSC-cardiomyocytes (hiPSC-CMs). METHODS AND RESULTS: To avoid cell toxicity by electrical pacing, we developed an optogenetic approach. EHTs were transduced with lentivirus expressing channelrhodopsin-2 (H134R) and stimulated by 15 s bursts of blue light pulses (0.3 mW/mm2, 30 ms, 3 Hz) separated by 15 s without pacing for 3 weeks. Chronic optical tachypacing did not affect contractile peak force, but induced faster contraction kinetics, shorter action potentials, and shorter effective refractory periods. This electrical remodelling increased vulnerability to tachycardia episodes upon electrical burst pacing. Lower calsequestrin 2 protein levels, faster diastolic depolarization (DD) and efficacy of JTV-519 (46% at 1 µmol/L) to terminate tachycardia indicate alterations of Ca2+ handling being part of the underlying mechanism. However, other antiarrhythmic compounds like flecainide (69% at 1 µmol/L) and E-4031 (100% at 1 µmol/L) were also effective, but not ivabradine (1 µmol/L) or SEA0400 (10 µmol/L). CONCLUSION: We demonstrated a high vulnerability to tachycardia of optically tachypaced hiPSC-CMs in EHT and the effective termination by ryanodine receptor stabilization, sodium or hERG potassium channel inhibition. This new model might serve as a preclinical tool to test antiarrhythmic drugs increasing the insight in treating ventricular tachycardia.


Subject(s)
Action Potentials , Cardiac Pacing, Artificial , Channelrhodopsins/metabolism , Heart Rate , Heart/physiopathology , Induced Pluripotent Stem Cells/metabolism , Myocardial Contraction , Myocytes, Cardiac/metabolism , Optogenetics , Tachycardia, Ventricular/physiopathology , Action Potentials/drug effects , Anti-Arrhythmia Agents/pharmacology , Calcium Channels, L-Type/metabolism , Calcium Signaling/drug effects , Channelrhodopsins/genetics , Heart/drug effects , Heart Rate/drug effects , Humans , Induced Pluripotent Stem Cells/drug effects , Kinetics , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Tachycardia, Ventricular/drug therapy , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/metabolism , Tissue Engineering
14.
EMBO Mol Med ; 11(12): e11115, 2019 12.
Article in English | MEDLINE | ID: mdl-31680489

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease accompanied by structural and contractile alterations. We identified a rare c.740C>T (p.T247M) mutation in ACTN2, encoding α-actinin 2 in a HCM patient, who presented with left ventricular hypertrophy, outflow tract obstruction, and atrial fibrillation. We generated patient-derived human-induced pluripotent stem cells (hiPSCs) and show that hiPSC-derived cardiomyocytes and engineered heart tissues recapitulated several hallmarks of HCM, such as hypertrophy, myofibrillar disarray, hypercontractility, impaired relaxation, and higher myofilament Ca2+ sensitivity, and also prolonged action potential duration and enhanced L-type Ca2+ current. The L-type Ca2+ channel blocker diltiazem reduced force amplitude, relaxation, and action potential duration to a greater extent in HCM than in isogenic control. We translated our findings to patient care and showed that diltiazem application ameliorated the prolonged QTc interval in HCM-affected son and sister of the index patient. These data provide evidence for this ACTN2 mutation to be disease-causing in cardiomyocytes, guiding clinical therapy in this HCM family. This study may serve as a proof-of-principle for the use of hiPSC for personalized treatment of cardiomyopathies.


Subject(s)
Actinin/genetics , Cardiomyopathy, Hypertrophic/genetics , Animals , Disease Models, Animal , Humans , Long QT Syndrome/genetics , Mutation , Precision Medicine
16.
Pflugers Arch ; 471(5): 807-815, 2019 05.
Article in English | MEDLINE | ID: mdl-29971600

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is an inherited myocardial disease with an estimated prevalence of 1:200 caused by mutations in sarcomeric proteins. It is associated with hypertrophy of the left ventricle, increased interstitial fibrosis, and diastolic dysfunction for heterozygous mutation carriers. Carriers of double heterozygous, compound heterozygous, and homozygous mutations often display more severe forms of cardiomyopathies, ultimately leading to premature death. So far, there is no curative treatment against HCM, as current therapies are focused on symptoms relief by pharmacological intervention and not on the cause of HCM. In the last decade, several strategies have been developed to remove genetic defects, including genome editing, exon skipping, allele-specific silencing, spliceosome-mediated RNA trans-splicing, and gene replacement. Most of these technologies have already been tested for efficacy and efficiency in animal- or human-induced pluripotent stem cell models of HCM with promising results. We will summarize recent technological advances and their implication as gene therapy options in HCM with a special focus on treating MYBPC3 mutations and its potential for being a successful bench to bedside example.


Subject(s)
Cardiomyopathy, Hypertrophic/genetics , Genetic Therapy/methods , Animals , Cardiomyopathy, Hypertrophic/therapy , Gene Editing/methods , Humans
17.
J Mol Cell Cardiol ; 127: 31-43, 2019 02.
Article in English | MEDLINE | ID: mdl-30521840

ABSTRACT

The sympathetic nervous system is the main stimulator of cardiac function. While acute activation of the ß-adrenoceptors exerts positive inotropic and lusitropic effects by increasing cAMP and Ca2+, chronically enhanced sympathetic tone with changed ß-adrenergic signaling leads to alterations of gene expression and remodeling. The CREB-regulated transcription coactivator 1 (CRTC1) is activated by cAMP and Ca2+. In the present study, the regulation of CRTC1 in cardiomyocytes and its effect on cardiac function and growth was investigated. In cardiomyocytes, isoprenaline induced dephosphorylation, and thus activation of CRTC1, which was prevented by propranolol. Crtc1-deficient mice exhibited left ventricular dysfunction, hypertrophy and enlarged cardiomyocytes. However, isoprenaline-induced contractility of isolated trabeculae or phosphorylation of cardiac troponin I, cardiac myosin-binding protein C, phospholamban, and ryanodine receptor were not altered, suggesting that cardiac dysfunction was due to the global lack of Crtc1. The mRNA and protein levels of the Gαq GTPase activating protein regulator of G-protein signaling 2 (RGS2) were lower in hearts of Crtc1-deficient mice. Chromatin immunoprecipitation and reporter gene assays showed stimulation of the Rgs2 promoter by CRTC1. In Crtc1-deficient cardiomyocytes, phosphorylation of the Gαq-downstream kinase ERK was enhanced. CRTC1 content was higher in cardiac tissue from patients with aortic stenosis or hypertrophic cardiomyopathy and from two murine models mimicking these diseases. These data suggest that increased CRTC1 in maladaptive hypertrophy presents a compensatory mechanism to delay disease progression in part by enhancing Rgs2 gene transcription. Furthermore, the present study demonstrates an important role of CRTC1 in the regulation of cardiac function and growth.


Subject(s)
Cardiomegaly/metabolism , Transcription Factors/metabolism , Animals , Cardiomegaly/diagnostic imaging , Cardiomegaly/physiopathology , Cyclic AMP-Dependent Protein Kinases/metabolism , HEK293 Cells , Humans , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Phosphorylation , Promoter Regions, Genetic , RGS Proteins/genetics , RGS Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Wistar , Receptors, Adrenergic, beta/metabolism , Signal Transduction , Transcription Factors/deficiency
18.
Circ Arrhythm Electrophysiol ; 11(7): e006035, 2018 07.
Article in English | MEDLINE | ID: mdl-29925535

ABSTRACT

BACKGROUND: Cardiac repolarization abnormalities in drug-induced and genetic long-QT syndrome may lead to afterdepolarizations and life-threatening ventricular arrhythmias. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) should help to overcome the limitations of animal models based on species differences in repolarization reserve. Here, we compared head-to-head the contribution of IKs (long QT1) and IKr (long QT2) on action potentials (APs) in human left ventricular (LV) tissue and hiPSC-CM-derived engineered heart tissue (EHT). METHODS: APs were measured with sharp microelectrodes in EHT from 3 different control hiPSC-CM lines and in tissue preparations from failing LV. RESULTS: EHT from hiPSC-CMs showed spontaneous diastolic depolarization and AP generation that were sensitive to low concentrations of ivabradine. IKr block by E-4031 prolonged AP duration at 90% repolarization with similar half-effective concentration in EHT and LV but larger effect size in EHT (+281 versus +110 ms in LV). Although IKr block alone evoked early afterdepolarizations and triggered activity in 50% of EHTs, slow pacing, reduced extracellular K+, and blocking of IKr, IKs, and IK1 were necessary to induce early afterdepolarizations in LV. In accordance with their clinical safety, moxifloxacin and verapamil did not induce early afterdepolarizations in EHT. In both EHT and LV, IKs block by HMR-1556 prolonged AP duration at 90% repolarization slightly in the combined presence of E-4031 and isoprenaline. CONCLUSIONS: EHT from hiPSC-CMs shows a lower repolarization reserve than human LV working myocardium and could thereby serve as a sensitive and specific human-based model for repolarization studies and arrhythmia, similar to Purkinje fibers. In both human LV and EHT, IKs only contributed to repolarization under adrenergic stimulation.


Subject(s)
Action Potentials , Arrhythmias, Cardiac/chemically induced , Biological Assay , Heart Rate , Heart Ventricles/drug effects , Induced Pluripotent Stem Cells/drug effects , Long QT Syndrome/genetics , Romano-Ward Syndrome/genetics , Action Potentials/drug effects , Action Potentials/genetics , Anti-Arrhythmia Agents/pharmacology , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Cell Line , Computer Simulation , ERG1 Potassium Channel/genetics , ERG1 Potassium Channel/metabolism , Heart Rate/drug effects , Heart Rate/genetics , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Humans , Induced Pluripotent Stem Cells/metabolism , KCNQ1 Potassium Channel/genetics , KCNQ1 Potassium Channel/metabolism , Long QT Syndrome/drug therapy , Long QT Syndrome/metabolism , Long QT Syndrome/physiopathology , Models, Cardiovascular , Phenotype , Potassium Channel Blockers/pharmacology , Risk Assessment , Romano-Ward Syndrome/drug therapy , Romano-Ward Syndrome/metabolism , Romano-Ward Syndrome/physiopathology , Time Factors
19.
Eur Heart J ; 39(43): 3879-3892, 2018 11 14.
Article in English | MEDLINE | ID: mdl-29741611

ABSTRACT

Aims: Sarcomeric gene mutations frequently underlie hypertrophic cardiomyopathy (HCM), a prevalent and complex condition leading to left ventricle thickening and heart dysfunction. We evaluated isogenic genome-edited human pluripotent stem cell-cardiomyocytes (hPSC-CM) for their validity to model, and add clarity to, HCM. Methods and results: CRISPR/Cas9 editing produced 11 variants of the HCM-causing mutation c.C9123T-MYH7 [(p.R453C-ß-myosin heavy chain (MHC)] in 3 independent hPSC lines. Isogenic sets were differentiated to hPSC-CMs for high-throughput, non-subjective molecular and functional assessment using 12 approaches in 2D monolayers and/or 3D engineered heart tissues. Although immature, edited hPSC-CMs exhibited the main hallmarks of HCM (hypertrophy, multi-nucleation, hypertrophic marker expression, sarcomeric disarray). Functional evaluation supported the energy depletion model due to higher metabolic respiration activity, accompanied by abnormalities in calcium handling, arrhythmias, and contraction force. Partial phenotypic rescue was achieved with ranolazine but not omecamtiv mecarbil, while RNAseq highlighted potentially novel molecular targets. Conclusion: Our holistic and comprehensive approach showed that energy depletion affected core cardiomyocyte functionality. The engineered R453C-ßMHC-mutation triggered compensatory responses in hPSC-CMs, causing increased ATP production and αMHC to energy-efficient ßMHC switching. We showed that pharmacological rescue of arrhythmias was possible, while MHY7: MYH6 and mutant: wild-type MYH7 ratios may be diagnostic, and previously undescribed lncRNAs and gene modifiers are suggestive of new mechanisms.


Subject(s)
Arrhythmias, Cardiac/genetics , Cardiomyopathy, Hypertrophic/genetics , Myocardial Contraction/genetics , Myocytes, Cardiac/physiology , Pluripotent Stem Cells/physiology , CRISPR-Cas Systems/genetics , Cells, Cultured , Gene Editing , Humans , Models, Cardiovascular
20.
Circ Heart Fail ; 10(10)2017 Oct.
Article in English | MEDLINE | ID: mdl-29021349

ABSTRACT

BACKGROUND: Alterations in autophagy have been reported in hypertrophic cardiomyopathy (HCM) caused by Danon disease, Vici syndrome, or LEOPARD syndrome, but not in HCM caused by mutations in genes encoding sarcomeric proteins, which account for most of HCM cases. MYBPC3, encoding cMyBP-C (cardiac myosin-binding protein C), is the most frequently mutated HCM gene. METHODS AND RESULTS: We evaluated autophagy in patients with HCM carrying MYBPC3 mutations and in a Mybpc3-targeted knockin HCM mouse model, as well as the effect of autophagy modulators on the development of cardiomyopathy in knockin mice. Microtubule-associated protein 1 light chain 3 (LC3)-II protein levels were higher in HCM septal myectomies than in nonfailing control hearts and in 60-week-old knockin than in wild-type mouse hearts. In contrast to wild-type, autophagic flux was blunted and associated with accumulation of residual bodies and glycogen in hearts of 60-week-old knockin mice. We found that Akt-mTORC1 (mammalian target of rapamycin complex 1) signaling was increased, and treatment with 2.24 mg/kg·d rapamycin or 40% caloric restriction for 9 weeks partially rescued cardiomyopathy or heart failure and restored autophagic flux in knockin mice. CONCLUSIONS: Altogether, we found that (1) autophagy is altered in patients with HCM carrying MYBPC3 mutations, (2) autophagy is impaired in Mybpc3-targeted knockin mice, and (3) activation of autophagy ameliorated the cardiac disease phenotype in this mouse model. We propose that activation of autophagy might be an attractive option alone or in combination with another therapy to rescue HCM caused by MYBPC3 mutations.


Subject(s)
Autophagy/physiology , Cardiomyopathies/genetics , Cardiomyopathy, Hypertrophic/genetics , Carrier Proteins/genetics , Mutation/genetics , Myocardium/metabolism , Animals , Cardiomyopathies/metabolism , Disease Models, Animal , Gene Knock-In Techniques/methods , Genotype , Heart Failure/genetics , Heart Failure/metabolism , Humans , Mice, Transgenic , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...