Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Vector Borne Zoonotic Dis ; 21(10): 762-768, 2021 10.
Article in English | MEDLINE | ID: mdl-34342513

ABSTRACT

Trypanosoma cruzi-associated megaesophagus was diagnosed in a domestic Louisiana-born llama with no significant travel history. The llama resided in the same rural area of greater New Orleans, Louisiana, where the first human autochthonous case of Chagas disease was identified in the state. Venous blood from the llama tested positive for T. cruzi kinetoplastid DNA by conventional PCR. The cardiac evaluation was unremarkable, while thoracic radiographs revealed generalized megaesophagus. The llama received supportive care, but was ultimately humanely euthanized. The esophagus was severely distended throughout its length on necropsy, and histologic evaluation showed no microscopic changes in esophageal tissue and minimal to mild lymphoplasmacytic inflammation in cardiac tissue. T. cruzi DNA was detected by conventional PCR in the esophagus, small intestine, and blood despite no protozoan organisms being observed in multiple tissue sections examined. This report contributes to the growing body of evidence of local transmission of T. cruzi in the southern United States, and Chagas disease should be considered a differential diagnosis when evaluating llamas and other large animal species for esophageal dysfunction. There is little research describing megaesophagus or Chagas disease in llamas, and this report aims to increase awareness about this zoonotic disease that is becoming more frequently reported in the southern United States.


Subject(s)
Camelids, New World , Chagas Disease , Trypanosoma cruzi , Animals , Chagas Disease/epidemiology , Chagas Disease/veterinary , Louisiana , New Orleans
2.
Mol Ecol ; 29(19): 3747-3761, 2020 10.
Article in English | MEDLINE | ID: mdl-32749727

ABSTRACT

Integrating how biodiversity and infectious disease dynamics are linked at multiple levels and scales is highly challenging. Chagas disease is a vector-borne disease, with specificities of the triatomine vectors and Trypanosoma cruzi parasite life histories resulting in a complex multihost and multistrain life cycle. Here, we tested the hypothesis that T. cruzi transmission cycles are shaped by triatomine host communities and gut microbiota composition by comparing the integrated interactions of Triatoma sanguisuga in southern Louisiana with feeding hosts, T. cruzi parasite and bacterial microbiota in two habitats. Bugs were collected from resident's houses and animal shelters and analysed for genetic structure, blood feeding sources, T. cruzi parasites, and bacterial diversity by PCR amplification of specific DNA markers followed by next-generation sequencing, in an integrative metabarcoding approach. T. sanguisuga feeding host communities appeared opportunistic and defined by host abundance in each habitat, yielding distinct parasite transmission networks among hosts. The circulation of a large diversity of T. cruzi DTUs was also detected, with TcII and TcV detected for the first time in triatomines in the US. The bacterial microbiota was highly diverse and varied significantly according to the DTU infecting the bugs, indicating specific interactions among them in the gut. Expanding such studies to multiple habitats and additional triatomine species would be key to further refine our understanding of the complex life cycles of multihost, multistrain parasites such as T. cruzi, and may lead to improved disease control strategies.


Subject(s)
Chagas Disease , Gastrointestinal Microbiome , Triatoma , Trypanosoma cruzi , Animals , Gastrointestinal Microbiome/genetics , Louisiana , Triatoma/genetics , Trypanosoma cruzi/genetics
3.
Vector Borne Zoonotic Dis ; 20(7): 535-540, 2020 07.
Article in English | MEDLINE | ID: mdl-32286921

ABSTRACT

Raccoons are an important reservoir for Trypanosoma cruzi infection, having been reported to maintain a high and lengthy parasitemia. Although raccoon populations have historically been abundant in Louisiana, the prevalence rate of T. cruzi infection in raccoons in this state is unknown. Here, we tested raccoon tissues from two urban areas in Louisiana, namely Orleans Parish (OP) and East Baton Rouge Parish (EBRP), to investigate prevalence in these areas using direct detection through polymerase chain reaction. Overall, 33.6% of raccoons tested were positive. The prevalence in OP (42.9%) was significantly higher than the prevalence in EBRP (23.2%). There was no significant difference in prevalence between sexes or based on age, but there was a significant difference in infection prevalence based on season of trapping. These results suggest the importance of raccoons as a reservoir host, maintaining T. cruzi infection and potentially posing a risk to human health.


Subject(s)
Chagas Disease/parasitology , Disease Reservoirs/veterinary , Raccoons , Trypanosoma cruzi/isolation & purification , Animals , Cities , Disease Reservoirs/parasitology , Female , Louisiana/epidemiology , Male , Seasons , Zoonoses
4.
J Microbiol Immunol Infect ; 53(4): 622-633, 2020 Aug.
Article in English | MEDLINE | ID: mdl-30709717

ABSTRACT

BACKGROUND/PURPOSE: The parasitic protozoa Trypanosoma cruzi, is widely distributed throughout the Americas. We explored the nature of T. cruzi infection in small rodents from New Orleans (LA, USA), an enzootic region of the parasite in North America. METHODS: We characterized the full complement of discrete typing units (DTUs) in rodent hosts through next-generation metabarcoding, as conventional PCR and Sanger sequencing approaches only detect the dominant genotype in biological samples. We assayed DTU diversity in tissue samples from 6 T. cruzi PCR positive rodents. The intergenic region of the mini-exon gene was amplified and sequenced on a MiSeq platform. A total of 141 sequences were aligned using Muscle, and TCS networks were constructed to identify DTUs in the samples. RESULTS: We detected distinct and varying assemblages of DTUs in the rodent hosts. Highly diverse DTU assemblages were detected, with 6-32 haplotypes recovered per individual, spanning multiple DTUs (TcI,TcII, TcIV, TcV and TcVI). Haplotypes varied in frequencies from 82% to less than 0.1%. DTU composition varied according to the tissue analyzed. Rural and urban rodents carried similarly diverse DTU assemblages, though urban rodent species tended to harbor more haplotypes than their sylvatic counterparts. CONCLUSION: Our results affirm that mammalian hosts can concurrently harbor a diverse complement of parasites, and indicate that there is greater diversity of T. cruzi DTUs present in North America than previously thought. Further investigation is warranted to understand the role of commensal rodents as a reservoir for T. cruzi in sylvatic and peridomestic environments.


Subject(s)
Chagas Disease/veterinary , Genetic Variation , Genotype , High-Throughput Nucleotide Sequencing , Rodentia/parasitology , Trypanosoma cruzi/classification , Trypanosoma cruzi/genetics , Animals , Chagas Disease/parasitology , Chagas Disease/transmission , DNA, Intergenic , DNA, Protozoan/genetics , Trypanosoma cruzi/pathogenicity , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...