Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Antibodies (Basel) ; 12(4)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37987246

ABSTRACT

Asparagine deamidation is a post-translational modification (PTM) that converts asparagine residues into iso-aspartate and/or aspartate. Non-enzymatic asparagine deamidation is observed frequently during the manufacturing, processing, and/or storage of biotherapeutic proteins. Depending on the site of deamidation, this PTM can significantly impact the therapeutic's potency, stability, and/or immunogenicity. Thus, deamidation is routinely monitored as a potential critical quality attribute. The initial evaluation of an asparagine's potential to deamidate begins with identifying sequence liabilities, in which the n + 1 amino acid is of particular interest. NW is one motif that occurs frequently within the complementarity-determining region (CDR) of therapeutic antibodies, but according to the published literature, has a very low risk of deamidating. Here we report an unusual case of this NW motif readily deamidating within the CDR of an antibody drug conjugate (ADC), which greatly impacts the ADC's biological activities. Furthermore, this NW motif solely deamidates into iso-aspartate, rather than the typical mixture of iso-aspartate and aspartate. Interestingly, biological activities are more severely impacted by the conversion of asparagine into iso-aspartate via deamidation than by conversion into aspartate via mutagenesis. Here, we detail the discovery of this unusual NW deamidation occurrence, characterize its impact on biological activities, and utilize structural data and modeling to explain why conversion to iso-aspartate is favored and impacts biological activities more severely.

2.
MAbs ; 15(1): 2152526, 2023.
Article in English | MEDLINE | ID: mdl-36476037

ABSTRACT

To combat the COVID-19 pandemic, potential therapies have been developed and moved into clinical trials at an unprecedented pace. Some of the most promising therapies are neutralizing antibodies against SARS-CoV-2. In order to maximize the therapeutic effectiveness of such neutralizing antibodies, Fc engineering to modulate effector functions and to extend half-life is desirable. However, it is critical that Fc engineering does not negatively impact the developability properties of the antibodies, as these properties play a key role in ensuring rapid development, successful manufacturing, and improved overall chances of clinical success. In this study, we describe the biophysical characterization of a panel of Fc engineered ("TM-YTE") SARS-CoV-2 neutralizing antibodies, the same Fc modifications as those found in AstraZeneca's Evusheld (AZD7442; tixagevimab and cilgavimab), in which the TM modification (L234F/L235E/P331S) reduce binding to FcγR and C1q and the YTE modification (M252Y/S254T/T256E) extends serum half-life. We have previously shown that combining both the TM and YTE Fc modifications can reduce the thermal stability of the CH2 domain and possibly lead to developability challenges. Here we show, using a diverse panel of TM-YTE SARS-CoV-2 neutralizing antibodies, that despite lowering the thermal stability of the Fc CH2 domain, the TM-YTE platform does not have any inherent developability liabilities and shows an in vivo pharmacokinetic profile in human FcRn transgenic mice similar to the well-characterized YTE platform. The TM-YTE is therefore a developable, effector function reduced, half-life extended antibody platform.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , Humans , SARS-CoV-2/genetics , Pandemics , Antibodies, Neutralizing
3.
J Immunol Methods ; 496: 113099, 2021 09.
Article in English | MEDLINE | ID: mdl-34224737

ABSTRACT

Bispecific antibodies (BsAbs) are engineered to simultaneously bind two different antigens, and offer promising clinical outcomes for various diseases. The dual binding properties of BsAbs may enable superior efficacies and/or potencies compared to standard monoclonal antibodies (mAbs) or combination mAb therapies. Characterizing BsAb binding properties is critical during biotherapeutic development, where data is leveraged to predict efficacy and potency, assess critical quality attributes and improve antibody design. Traditional single-target, single-readout approaches (e.g., ELISA) have limited usefulness for interpreting complex bispecific binding, and double the benchwork. To address these deficiencies, we developed and implemented a new dual-target/readout binding assay that accurately dissects the affinities of both BsAb binding domains directly and simultaneously. This new assay uses AlphaPlex® technology, which eliminates traditional ELISA wash steps and can be miniaturized for automated workflows. The optimized BsAb AlphaPlex assay demonstrates 99-107% accuracy within a 50-150% linear range, and detected >50% binding degradation from photo- and thermal stress conditions. To the best of our knowledge, this is the first instance of a dual-target/readout BsAb AlphaPlex assay with GMP-suitable linear range, accuracy, specificity, and stability-indicating properties. As a highly customizable and efficient assay, BsAb AlphaPlex may be applicable to numerous bispecific formats and/or co-formulations against a variety of antigens beyond the clinical therapeutic space.


Subject(s)
Antibodies, Bispecific/immunology , Antibody Specificity , Antigens/immunology , CTLA-4 Antigen/immunology , Immunoassay , Programmed Cell Death 1 Receptor/immunology , Antibodies, Bispecific/metabolism , Antigen-Antibody Complex , Antigens/metabolism , Binding Sites, Antibody , Buffers , CTLA-4 Antigen/metabolism , Enzyme-Linked Immunosorbent Assay , Epitopes , Humans , Hydrogen-Ion Concentration , Kinetics , Predictive Value of Tests , Programmed Cell Death 1 Receptor/metabolism , Protein Binding , Reproducibility of Results
4.
MAbs ; 12(1): 1684749, 2020.
Article in English | MEDLINE | ID: mdl-31775561

ABSTRACT

The ability to genetically encode non-natural amino acids (nnAAs) into proteins offers an expanded tool set for protein engineering. nnAAs containing unique functional moieties have enabled the study of post-translational modifications, protein interactions, and protein folding. In addition, nnAAs have been developed that enable a variety of biorthogonal conjugation chemistries that allow precise and efficient protein conjugations. These are being studied to create the next generation of antibody-drug conjugates with improved efficacy, potency, and stability for the treatment of cancer. However, the efficiency of nnAA incorporation, and the productive yields of cell-based expression systems, have limited the utility and widespread use of this technology. We developed a process to isolate stable cell lines expressing a pyrrolysyl-tRNA synthetase/tRNApyl pair capable of efficient nnAA incorporation. Two different platform cell lines generated by these methods were used to produce IgG-expressing cell lines with normalized antibody titers of 3 g/L using continuous perfusion. We show that the antibodies produced by these platform cells contain the nnAA functionality that enables facile conjugations. Characterization of these highly active and robust platform hosts identified key parameters that affect nnAA incorporation efficiency. These highly efficient host platforms may help overcome the expression challenges that have impeded the developability of this technology for manufacturing proteins with nnAAs and represents an important step in expanding its utility.


Subject(s)
Amino Acids/genetics , Amino Acyl-tRNA Synthetases/genetics , Antineoplastic Agents/chemistry , Immunoconjugates/genetics , Immunoglobulin G/genetics , Protein Engineering/methods , Amino Acid Sequence , Amino Acids/chemistry , Animals , CHO Cells , Cricetulus , Gene Expression , High-Throughput Screening Assays , Humans , Immunoconjugates/chemistry , Immunoglobulin G/chemistry , Lysine/analogs & derivatives , Lysine/chemistry , Protein Processing, Post-Translational
5.
J Pharm Sci ; 108(11): 3540-3549, 2019 11.
Article in English | MEDLINE | ID: mdl-31374319

ABSTRACT

mAbs undergo several post-translational modifications, including the formation of succinimide from the deamidation of asparagine or the isomerization of aspartic acid. Because of the potential impact of succinimide formation on the biological activity of mAbs, detection and quantification of this species is a key area of interest for the pharmaceutical industry. However, studies assessing succinimide stability have been limited, and methods developed to monitor succinimide are either product specific or not robust. Here, we report the development of a platform low-pH peptide-mapping method using a combination of low-pH-resistant Lys-C and modified trypsin to maintain succinimide stability, eliminate deamidation assay artifact, and achieve efficient mAb digestion equivalent to conventional tryptic peptide-mapping method under alkaline condition. Using this method, succinimide stability in serum was accurately assessed in vitro study and the half-life was determined to be 1.5 days. With potential patient exposure to succinimide intermediate, a reliable method was developed to measure site-specific deamidation and succinimide intermediate. Coupled with a single quadrupole mass detector, our method was automated from digestion to data processing and applicable in a good manufacturing practice environment. The method was fully qualified to demonstrate accuracy, precision, linearity, and robustness.


Subject(s)
Peptide Mapping/methods , Succinimides/chemistry , Antibodies, Monoclonal/chemistry , Humans , Hydrogen-Ion Concentration , Isomerism , Lysine/chemistry , Trypsin/chemistry
6.
MAbs ; 11(3): 489-499, 2019 04.
Article in English | MEDLINE | ID: mdl-30786796

ABSTRACT

Combination therapy is a fast-growing strategy to maximize therapeutic benefits to patients. Co-formulation of two or more therapeutic proteins has advantages over the administration of multiple medications, including reduced medication errors and convenience for patients. Characterization of co-formulated biologics can be challenging due to the high degree of similarity in the physicochemical properties of co-formulated proteins, especially at different concentrations of individual components. We present the results of a deamidation study of one monoclonal antibody component (mAb-B) in co-formulated combination antibodies (referred to as COMBO) that contain various ratios of mAb-A and mAb-B. A single deamidation site in the complementarity-determining region of mAb-B was identified as a critical quality attribute (CQA) due to its impact on biological activity. A conventional charge-based method of monitoring mAb-B deamidation presented specificity and robustness challenges, especially when mAb-B was a minor component in the COMBO, making it unsuitable for lot release and stability testing. We developed and qualified a new, quality-control-friendly, single quadrupole Dalton mass detector (QDa)-based method to monitor site-specific deamidation. Our approach can be also used as a multi-attribute method for monitoring other quality attributes in COMBO. This analytical paradigm is applicable to the identification of CQAs in combination therapeutic molecules, and to the subsequent development of a highly specific, highly sensitive, and sufficiently robust method for routine monitoring CQAs for lot release test and during stability studies.


Subject(s)
Antibodies, Monoclonal/chemistry , Complementarity Determining Regions/chemistry , Immunoglobulin G/chemistry , Animals , CHO Cells , Cricetulus , Drug Therapy, Combination , Humans , Quality Control
SELECTION OF CITATIONS
SEARCH DETAIL
...