Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 228: 113971, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34772529

ABSTRACT

Hybrid molecules targeting simultaneously DNA polymerase α (POLA1) and histone deacetylases (HDACs) were designed and synthesized to exploit a potential synergy of action. Among a library of screened molecules, MIR002 and GEM144 showed antiproliferative activity at nanomolar concentrations on a panel of human solid and haematological cancer cell lines. In vitro functional assays confirmed that these molecules inhibited POLA1 primer extension activity, as well as HDAC11. Molecular docking studies also supported these findings. Mechanistically, MIR002 and GEM144 induced acetylation of p53, activation of p21, G1/S cell cycle arrest, and apoptosis. Oral administration of these inhibitors confirmed their antitumor activity in in vivo models. In human non-small cancer cell (H460) xenografted in nude mice MIR002 at 50 mg/kg, Bid (qd × 5 × 3w) inhibited tumor growth (TGI = 61%). More interestingly, in POLA1 inhibitor resistant cells (H460-R9A), the in vivo combination of MIR002 with cisplatin showed an additive antitumor effect with complete disappearance of tumor masses in two animals at the end of the treatment. Moreover, in two human orthotopic malignant pleural mesothelioma xenografts (MM473 and MM487), oral treatments with MIR002 and GEM144 confirmed their significant antitumor activity (TGI = 72-77%). Consistently with recent results that have shown an inverse correlation between POLA1 expression and type I interferon levels, MIR002 significantly upregulated interferon-α in immunocompetent mice.


Subject(s)
Antineoplastic Agents/pharmacology , DNA Polymerase I/antagonists & inhibitors , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , DNA Polymerase I/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Humans , Mice , Mice, Inbred C57BL , Mice, Nude , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Structure-Activity Relationship , Tumor Cells, Cultured
2.
Sci Rep ; 10(1): 16383, 2020 10 02.
Article in English | MEDLINE | ID: mdl-33009446

ABSTRACT

Nephrogenic diabetes insipidus (NDI) is a rare tubulopathy characterized by urinary concentration defect due to renal resistance to vasopressin. Loss-of-function mutations of vasopressin V2 receptor (V2R) gene (AVPR2) is the most common cause of the disease. We have identified five novel mutations L86P, R113Q, C192S, M272R, and W323_I324insR from NDI-affected patients. Functional characterization of these mutants revealed that R113Q and C192S were normally localized at the basolateral membrane of polarized Madin-Darby Canine Kidney (MDCK) cells and presented proper glycosylation maturation. On the other side, L86P, M272R, and W323_I324insR mutants were retained in endoplasmic reticulum and exhibited immature glycosylation and considerably reduced stability. All five mutants were resistant to administration of vasopressin analogues as evaluated by defective response in cAMP release. In order to rescue the function of the mutated V2R, we tested VX-809, sildenafil citrate, ibuprofen and tolvaptan in MDCK cells. Among these, tolvaptan was effective in rescuing the function of M272R mutation, by both allowing proper glycosylation maturation, membrane sorting and response to dDAVP. These results show an important proof of concept for the use of tolvaptan in patients affected by M272R mutation of V2R causing NDI.


Subject(s)
Diabetes Insipidus, Nephrogenic/genetics , Mutation/drug effects , Mutation/genetics , Receptors, Vasopressin/genetics , Tolvaptan/pharmacology , Animals , Antidiuretic Hormone Receptor Antagonists/pharmacology , COS Cells , Cell Line , Cell Membrane/drug effects , Cell Membrane/genetics , Chlorocebus aethiops , Dogs , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/genetics , Humans , Madin Darby Canine Kidney Cells , Male , Protein Transport/drug effects , Protein Transport/genetics , Vasopressins/genetics
3.
Sci Rep ; 10(1): 5708, 2020 03 31.
Article in English | MEDLINE | ID: mdl-32235870

ABSTRACT

Potassium depletion affects AQP2 expression and the cellular composition of the kidney collecting duct. This, in turn, contributes to the development of a secondary form of nephrogenic diabetes insipidus and hypokalemic nephropathy. Here we show that after 14 days of potassium depletion, the cellular fraction of A-type intercalated cells increases while the fraction of principal cells decreases along the outer medullary collecting duct in rats. The intercalated cells acquired a novel distribution pattern forming rows of cells attached to each other. These morphological changes occur progressively and reverse after 7 days of recovery on normal rat chow diet. The cellular remodeling mainly occurred in the inner stripe of outer medulla similar to the previously seen effect of lithium on the collecting duct cellular profile. The cellular remodeling is associated with the appearance of cells double labelled with both specific markers of principal and type-A intercalated cells. The appearance of this cell type was associated with the downregulation of the Notch signaling via the Hes1 pathways. These results show that the epithelium of the collecting duct has a high degree of plasticity and that Notch signaling likely plays a key role during hypokalemia.


Subject(s)
Diabetes Insipidus, Nephrogenic/metabolism , Hypokalemia/metabolism , Kidney Medulla/metabolism , Kidney Tubules, Collecting/metabolism , Receptors, Notch/metabolism , Signal Transduction/physiology , Animals , Aquaporin 2/metabolism , Diabetes Insipidus, Nephrogenic/pathology , Down-Regulation , Hypokalemia/pathology , Kidney Medulla/pathology , Kidney Tubules, Collecting/pathology , Potassium/metabolism , Rats
5.
Front Physiol ; 9: 1273, 2018.
Article in English | MEDLINE | ID: mdl-30271355

ABSTRACT

Integrins are heterodimers anchoring cells to the surrounding extracellular matrix (ECM), an active and complex process mediating a series of inside-out and outside-in stimuli regulating cellular turn-over, tissue growth and architecture. Itgb1 is the main subunit of the renal integrins and it is critical for renal development. This study aims to investigate the role of Itgb1 in the adult renal epithelial cells by knocking down Itgb1 in PAX8 expressing cells. Itgb1-Pax8 cKO mice develop a progressively worsening proteinuria and renal abnormalities leading to severe renal failure and hypertension. This phenotype is also associated with severe dysfunction of distal nephron and polyuria. To further investigate whether distal nephron involvement was primarily related to Itgb1 suppression or secondary to renal failure, an Itgb1-AQP2 cKO mouse model was generated. These mice lack Itgb1 expression in AQP2 expressing cells. They do not show any developmental alteration, but 1 month old mice are resistant to dDAVP administration and finally, at 2 months of age, they develop overt polyuria. This phenotype is due to primary collecting duct (CD) cells anoikis. The entire architecture of the outer medulla is altered, with loss of the typical organization pattern of vascular and tubular bundles alternation. Indeed, even though not primarily affected by genetic ablation, the TAL is secondarily affected in this model. It is sufficient to suppress Itgb1 expression in the CD in order to stimulate proliferation and then disappearance of neighboring TAL cells. This study shows that cell to cell interaction through the ECM is critical for architecture and function maintenance of the outer medulla and that Itgb1 is crucial for this process.

6.
Kidney Dis (Basel) ; 3(3): 98-105, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29344504

ABSTRACT

BACKGROUND: Distal renal tubular acidosis (dRTA) is characterized by an impairment of the urinary acidification process in the distal nephron. Complete or incomplete metabolic acidosis coupled with inappropriately alkaline urine are the hallmarks of this condition. Genetic forms of dRTA are caused by loss of function mutations of either SLC4A1, encoding the AE1 anion exchanger, or ATP6V1B1 and ATP6V0A4, encoding for the B1 and a4 subunits of the vH+ATPase, respectively. These genes are crucial for the function of A-type intercalated cells (A-IC) of the distal nephron. SUMMARY: Alterations of acid-base homeostasis are variably associated with hypokalemia, hypercalciuria, nephrocalcinosis or nephrolithiasis, and a salt-losing phenotype. Here we report the diagnostic test and the underlying physiopathological mechanisms. The molecular mechanisms identified so far can explain the defect in acid secretion, but do not explain all clinical features. We review the latest experimental findings on the pathogenesis of dRTA, reporting mechanisms that are instrumental for the clinician and potentially inspiring a novel therapeutic strategy. KEY MESSAGE: Primary dRTA is usually intended as a single-cell disease because the A-IC are mainly affected. However, novel evidence shows that different cell types of the nephron may contribute to the signs and symptoms, moving the focus from a single-cell towards a renal disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...