Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 166
Filter
1.
Nat Metab ; 6(1): 78-93, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38191667

ABSTRACT

The coexistence of brown adipocytes with low and high thermogenic activity is a fundamental feature of brown adipose tissue heterogeneity and plasticity. However, the mechanisms that govern thermogenic adipocyte heterogeneity and its significance in obesity and metabolic disease remain poorly understood. Here we show that in male mice, a population of transcription factor jun-B (JunB)-enriched (JunB+) adipocytes within the brown adipose tissue exhibits lower thermogenic capacity compared to high-thermogenic adipocytes. The JunB+ adipocyte population expands in obesity. Depletion of JunB in adipocytes increases the fraction of adipocytes exhibiting high thermogenic capacity, leading to enhanced basal and cold-induced energy expenditure and protection against diet-induced obesity and insulin resistance. Mechanistically, JunB antagonizes the stimulatory effects of PPARγ coactivator-1α on high-thermogenic adipocyte formation by directly binding to the promoter of oestrogen-related receptor alpha, a PPARγ coactivator-1α downstream effector. Taken together, our study uncovers that JunB shapes thermogenic adipocyte heterogeneity, serving a critical role in maintaining systemic metabolic health.


Subject(s)
Insulin Resistance , Mice , Male , Animals , PPAR gamma/metabolism , Adipocytes, Brown/metabolism , Obesity/etiology , Obesity/metabolism , Diet, High-Fat , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Nat Rev Endocrinol ; 19(7): 407-424, 2023 07.
Article in English | MEDLINE | ID: mdl-37193881

ABSTRACT

Oestrogens and their receptors contribute broadly to physiology and diseases. In premenopausal women, endogenous oestrogens protect against cardiovascular, metabolic and neurological diseases and are involved in hormone-sensitive cancers such as breast cancer. Oestrogens and oestrogen mimetics mediate their effects via the cytosolic and nuclear receptors oestrogen receptor-α (ERα) and oestrogen receptor-ß (ERß) and membrane subpopulations as well as the 7-transmembrane G protein-coupled oestrogen receptor (GPER). GPER, which dates back more than 450 million years in evolution, mediates both rapid signalling and transcriptional regulation. Oestrogen mimetics (such as phytooestrogens and xenooestrogens including endocrine disruptors) and licensed drugs such as selective oestrogen receptor modulators (SERMs) and downregulators (SERDs) also modulate oestrogen receptor activity in both health and disease. Following up on our previous Review of 2011, we herein summarize the progress made in the field of GPER research over the past decade. We will review molecular, cellular and pharmacological aspects of GPER signalling and function, its contribution to physiology, health and disease, and the potential of GPER to serve as a therapeutic target and prognostic indicator of numerous diseases. We also discuss the first clinical trial evaluating a GPER-selective drug and the opportunity of repurposing licensed drugs for the targeting of GPER in clinical medicine.


Subject(s)
Breast Neoplasms , Receptors, Estrogen , Female , Humans , Breast Neoplasms/drug therapy , Estrogens/metabolism , Estrogens/therapeutic use , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/therapeutic use , Receptors, Estrogen/metabolism , Receptors, Estrogen/therapeutic use , Receptors, G-Protein-Coupled/metabolism
3.
Annu Rev Pharmacol Toxicol ; 63: 295-320, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36662583

ABSTRACT

The actions of estrogens and related estrogenic molecules are complex and multifaceted in both sexes. A wide array of natural, synthetic, and therapeutic molecules target pathways that produce and respond to estrogens. Multiple receptors promulgate these responses, including the classical estrogen receptors of the nuclear hormone receptor family (estrogen receptors α and ß), which function largely as ligand-activated transcription factors, and the 7-transmembrane G protein-coupled estrogen receptor, GPER, which activates a diverse array of signaling pathways. The pharmacology and functional roles of GPER in physiology and disease reveal important roles in responses to both natural and synthetic estrogenic compounds in numerous physiological systems. These functions have implications in the treatment of myriad disease states, including cancer, cardiovascular diseases, and metabolic disorders. This review focuses on the complex pharmacology of GPER and summarizes major physiological functions of GPER and the therapeutic implications and ongoing applications of GPER-targeted compounds.


Subject(s)
Estrogens , Receptors, Estrogen , Male , Female , Humans , Receptors, Estrogen/metabolism , Estrogens/pharmacology , Estrogens/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , GTP-Binding Proteins/metabolism
4.
Methods Mol Biol ; 2418: 187-201, 2022.
Article in English | MEDLINE | ID: mdl-35119667

ABSTRACT

The classical estrogen receptor α (ERα) has been a clinical therapeutic target for decades. ERα-targeted drugs have shown great clinical success, in particular as antagonists for the treatment of ERα-positive breast cancers. However, ERα-targeted agonists have also been clinically useful (e.g., for the treatment of osteoporosis). The breast cancer field is regularly identifying novel ERα-binding compounds with the goal of identifying new potential ERα-targeted therapeutics. To determine whether such newly identified ERα-binding compounds have clinical potential, it is important to characterize the estrogenic activity (i.e., both receptor-mediated agonism and/or antagonism) of these compounds. This chapter focuses on methods that allow determination of whether an ERα-binding compound acts as an agonist or antagonist of the receptor and whether the compound induces degradation of the receptor.


Subject(s)
Breast Neoplasms , Receptors, Estrogen , Breast Neoplasms/drug therapy , Estradiol/pharmacology , Estrogen Antagonists/pharmacology , Estrogen Receptor alpha/metabolism , Estrogens/pharmacology , Female , Humans , Receptors, Estrogen/metabolism
5.
Methods Mol Biol ; 2418: 383-404, 2022.
Article in English | MEDLINE | ID: mdl-35119676

ABSTRACT

Estrogens, predominantly 17ß-estradiol (E2), are a class of steroid hormones critical for diverse functions in the body both during normal physiology and disease. Primary actions of E2 include reproduction and development of secondary sexual characteristics. In addition, E2 action is involved in the nervous, immune, vascular, muscular, skeletal, and endocrine systems, all of which contribute to multiple aspects of metabolism. The actions of E2 have traditionally been attributed to the classical nuclear estrogen receptors (ERα and ERß) that largely mediate transcriptional/genomic activities. However, over the last decade, the G protein-coupled estrogen receptor (GPER/GPR30) has become recognized as a mediator of rapid as well as transcriptional actions of E2, employing both in vitro and in vivo approaches. Recent evidence strongly supports the role of GPER in metabolic regulation. Murine genetic knockout (KO) models and pharmacological tools (agonists and antagonists) represent important approaches to understand the mechanisms of E2 action in physiology and disease via GPER. Studies in cells and GPER KO mice have revealed functions for GPER in the regulation of body weight and metabolism. This chapter focuses on methods relevant for the evaluation of metabolic parameters in vivo, ex vivo, and in vitro. We have emphasized glucose homeostasis through the determination of glucose and insulin tolerance, pancreatic islet function, and glucose uptake. In addition, we describe methods of adipocyte isolation, differentiation of preadipocytes, and evaluation of mitochondrial function.


Subject(s)
Receptors, Estrogen , Receptors, G-Protein-Coupled , Adipocytes/metabolism , Animals , Estradiol , Estrogens/metabolism , Estrogens/pharmacology , Mice , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
7.
Cells ; 10(3)2021 03 17.
Article in English | MEDLINE | ID: mdl-33802978

ABSTRACT

Estrogen is involved in numerous physiological and pathophysiological systems. Its role in driving estrogen receptor-expressing breast cancers is well established, but it also has important roles in a number of other cancers, acting both on tumor cells directly as well as in the function of multiple cells of the tumor microenvironment, including fibroblasts, immune cells, and adipocytes, which can greatly impact carcinogenesis. One of its receptors, the G protein-coupled estrogen receptor (GPER), has gained much interest over the last decade in both health and disease. Increasing evidence shows that GPER contributes to clinically observed endocrine therapy resistance in breast cancer while also playing a complex role in a number of other cancers. Recent discoveries regarding the targeting of GPER in combination with immune checkpoint inhibition, particularly in melanoma, have led to the initiation of the first Phase I clinical trial for the GPER-selective agonist G-1. Furthermore, its functions in metabolism and corresponding pathophysiological states, such as obesity and diabetes, are becoming more evident and suggest additional therapeutic value in targeting GPER for both cancer and other diseases. Here, we highlight the roles of GPER in several cancers, as well as in metabolism and immune regulation, and discuss the therapeutic value of targeting this estrogen receptor as a potential treatment for cancer as well as contributing metabolic and inflammatory diseases and conditions.


Subject(s)
Breast Neoplasms/metabolism , Carcinogenesis/pathology , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Carcinogenesis/metabolism , Humans , Stromal Cells/metabolism , Stromal Cells/pathology , Tumor Microenvironment/physiology
8.
Med ; 2(3): 321-342, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33870243

ABSTRACT

BACKGROUND: The extensive alveolar capillary network of the lungs is an attractive route for administration of several agents. One key functional attribute is the rapid onset of systemic action due to the absence of first-pass metabolism. METHODS: Here we applied a combinatorial approach for ligand-directed pulmonary delivery as a unique route for systemic targeting in vaccination. FINDINGS: We screened a phage display random peptide library in vivo to select, identify, and validate a ligand (CAKSMGDIVC) that specifically targets and is internalized through its receptor, α3ß1 integrin, on the surface of cells lining the lung airways and alveoli and mediates CAKSMGDIVC-displaying phage binding and systemic delivery without compromising lung homeostasis. As a proof-of-concept, we show that the pulmonary delivery of targeted CAKSMGDIVC-displaying phage particles in mice and non-human primates elicit a systemic and specific humoral response. CONCLUSIONS: This broad methodology blueprint represents a robust and versatile platform tool enabling new ligand-receptor discovery with many potential translational applications. FUNDING: Cancer Center Support Grants to the University of Texas M.D. Anderson Cancer Center (CA016672), University of New Mexico Comprehensive Cancer Center (CA118100), Rutgers Cancer Institute of New Jersey (CA072720), research awards from the Gillson Longenbaugh Foundation, and National Institutes of Health (NIH) grant no. 1R01CA226537.


Subject(s)
Bacteriophages , Lung , Animals , Bacteriophages/genetics , Carrier Proteins/metabolism , Ligands , Lung/metabolism , Mice , Primates/metabolism , United States , Vaccination
9.
Endocr Metab Sci ; 22021 Mar 31.
Article in English | MEDLINE | ID: mdl-35321004

ABSTRACT

Obesity has become a global epidemic in the modern world with the numbers of obese individuals having risen at alarming rates in the last decades. Obesity represents a serious medical condition that can lead to multiple complications, such as diabetes, dyslipidemia, cardiovascular disease including hypertension and atherosclerosis, stroke and increases in the risk of many types of cancer. Very few effective options exist to treat obesity, with many removed from the market due to associated complications. Obesity and metabolic syndrome display a sexual dichotomy, with (premenopausal) females displaying protection from weight gain and metabolic dysfunction compared to men. These beneficial effects are generally attributed to a class of female ovarian hormone, estrogens, which exert pleiotropic effects in multiple metabolic tissues, such as adipose, skeletal muscle, liver and pancreas. Multiple receptors mediate the actions of estrogens, including the classical nuclear estrogen receptors (ER α and ER ß) and the G protein-coupled estrogen receptor (GPER). While the roles of nuclear ERs are more established, evidence of GPER function in metabolic homeostasis is still emerging. In this review, we will discuss the latest advances concerning the contributions of GPER towards obesity and metabolism utilizing GPER-selective pharmacological (agonists or antagonists) or genetic (GPER knock out mice or cells) tools. We present evidence that GPER regulates body weight, fat distribution, inflammation and glucose and lipid homeostasis via effects on metabolic tissues. Selective agonism of GPER by its agonist G-1 can alleviate symptoms of obesity and metabolic dysfunction in multiple murine models, thereby limiting weight gain, reducing insulin resistance and inflammation and improving glucose and lipid homeostasis in vivo. Thus, GPER represents a novel therapeutic target, with G-1 a first-in-class therapeutic agent, to treat obesity and its associated comorbidities, including diabetes.

10.
Cancers (Basel) ; 12(10)2020 Oct 06.
Article in English | MEDLINE | ID: mdl-33036138

ABSTRACT

Tumor-associated macrophages (TAMs) in the gastrointestinal tumor microenvironment (TME) are known to polarize into populations exhibiting pro- or anti-tumoral activity in response to stimuli such as growth factors and cytokines. Our previous work has recognized granulocyte colony-stimulating factor (G-CSF) as a cytokine capable of influencing immune cells of the TME exhibiting pro-tumoral activity. Here, we aimed to focus on how G-CSF regulates TAM phenotype and function and the effects on gastrointestinal (GI) tumor progression. Thus, wildtype (WT) and G-CSFR-/- macrophages were examined for cytokine production, gene expression, and transcription factor activity. Adoptive transfer of WT or G-CSFR-/- macrophages into tumor-bearing mice was performed to study their influence in the progression of colon (MC38) and pancreatic (PK5L1940) tumor mouse models. Finally, the difference in cytotoxic potential between WT and G-CSFR-/- macrophages was examined both in vitro and in vivo. Our results indicate that G-CSF promotes increased IL-10 production and decreased IL-12 production, which was reversed in G-CSFR-/- macrophages for a pro-inflammatory phenotype. Furthermore, G-CSFR-/- macrophages were characterized by higher levels of NOS2 expression and NO production, which led to greater tumor related cytotoxicity both in vitro and in vivo. Our results suggest that in the absence of G-CSFR, macrophage-related tumor cytotoxicity was amplified. These findings, along with our previous reports, pinpoint G-CSF /G-CSFR as a prominent target for possible clinical applications that aim to control the TME and the GI tumor progression.

11.
Front Immunol ; 11: 1885, 2020.
Article in English | MEDLINE | ID: mdl-33042110

ABSTRACT

Cytokines are known to shape the tumor microenvironment and although progress has been made in understanding their role in carcinogenesis, much remains to learn regarding their role in tumor growth and progression. We have identified granulocyte colony-stimulating factor (G-CSF) as one such cytokine, showing that G-CSF is linked with metastasis in human gastrointestinal tumors and neutralizing G-CSF in a mouse model of colitis-associated cancer is protective. Here, we set out to identify the role of G-CSF and its receptor, G-CSFR, in CD4+ and CD8+ T cell responses in the tumor microenvironment. MC38 colon cancer cells were injected into WT, G-CSFR-/- mice, or Rag2-/- mice. Flow cytometry, Real Time PCR and Multiplex cytokine array analysis were used for in vitro T cell phenotype analysis. Adoptive transfer of WT or G-CSFR-/- CD4+ of CD8+ T cells were performed. Mouse tumor size, cytokine expression, T cell phenotype, and cytotoxic activity were analyzed. We established that in G-CSFR-/- mice, tumor growth of MC38 colon cancer cells is significantly decreased. T cell phenotype and cytokine production were also altered, as both in vitro and in vivo approaches revealed that the G-CSF/G-CSFR stimulate IL-10-producing, FoxP3-expressing CD4+ and CD8+ T cells, whereas G-CSFR-/- T cells exhibit increased IFNγ and IL-17A production, leading to increased cytotoxic activity in the tumor microenvironment. Furthermore, peritumoral injection of recombinant IFNγ or IL-17A inhibited colon and pancreas tumor growth compared to controls. Taken together, our data reveal an unknown mechanism by which G-CSF, through its receptor G-CSFR, promotes an inhibitory Treg phenotype that limits tumor immune responses and furthermore suggest that targeting this cytokine/receptor axis could represent a novel therapeutic approach for gastrointestinal, and likely other tumors with high expression of these factors.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Colonic Neoplasms/metabolism , Cytotoxicity, Immunologic , Granulocyte Colony-Stimulating Factor/metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , Receptors, Colony-Stimulating Factor/metabolism , T-Lymphocytes, Regulatory/metabolism , Animals , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Coculture Techniques , Colonic Neoplasms/immunology , Colonic Neoplasms/pathology , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Female , Interferon-gamma/metabolism , Interleukin-10/metabolism , Interleukin-17/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Male , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Receptors, Colony-Stimulating Factor/deficiency , Receptors, Colony-Stimulating Factor/genetics , Signal Transduction , T-Lymphocytes, Regulatory/immunology , Tumor Burden , Tumor Microenvironment
12.
Am J Physiol Cell Physiol ; 319(5): C825-C838, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32783656

ABSTRACT

Hypertension (HTN) is a polyfactorial disease that can manifest severe cardiovascular pathologies such as heart failure or stroke. Genome-wide association studies (GWAS) of HTN indicate that single-nucleotide polymorphisms (SNPs) contribute to increased risk for HTN and resistance to some HTN drug regimens (Hiltunen TP et al., J Am Heart Assoc 4: e001521, 2015; Le MT et al., PLoS One 8: e52062, 2013; McDonough CW et al., J Hypertens 31: 698-704, 2013; Vandell AG et al., Hypertension 60: 957-964, 2012). However, cellular mechanistic insights of such SNPs remain largely unknown. Using a bank of induced pluripotent stem cells (iPSCs) derived from patients with HTN and CRISPR/Cas9-mediated gene-editing approach, we investigated the effects of a female HTN risk-associated SNP (rs1154431) of the G protein-coupled estrogen receptor (GPER) (Bassuk SS, Manson JE., Clin Chem 60: 68-77, 2014) in vascular endothelial cells. Although GPER1 deletion reduced endothelial nitric oxide synthase (eNOS) activation in iPSC-derived endothelial cells (iECs), the polymorphism itself did not significantly affect eNOS and NO production in a comparison of isogenic hemizygous iECs expressing either normal (P16) or HTN-associated (L16) GPER. Interestingly, we demonstrate for the first time that GPER plays a role in regulation of adhesion molecule expression and monocyte adhesion to iECs. Moreover, the L16 iECs had higher expression of inflammation genes than P16 iECs, implying that the risk variant may affect carrier individuals through increased inflammatory activity. This study further indicates that iPSCs are a useful platform for exploring mechanistic insights underlying hypertension GWAS endeavors.


Subject(s)
Endothelial Cells/metabolism , Hypertension/genetics , Induced Pluripotent Stem Cells/metabolism , Polymorphism, Single Nucleotide , Receptors, Estrogen/genetics , Receptors, G-Protein-Coupled/genetics , Adult , Antigens, CD/genetics , Antigens, CD/metabolism , Base Sequence , CRISPR-Cas Systems , Cadherins/genetics , Cadherins/metabolism , Cell Adhesion , Cell Differentiation , Cell Engineering/methods , Endothelial Cells/pathology , Female , Gene Editing/methods , Gene Expression Regulation , Humans , Hypertension/metabolism , Hypertension/physiopathology , Induced Pluripotent Stem Cells/pathology , Models, Biological , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Primary Cell Culture , Receptors, Estrogen/deficiency , Receptors, G-Protein-Coupled/deficiency , Risk Factors , THP-1 Cells , von Willebrand Factor/genetics , von Willebrand Factor/metabolism
13.
J Immunol ; 205(6): 1593-1600, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32769122

ABSTRACT

We previously reported sex differences in innate susceptibility to Staphylococcus aureus skin infection and that bone marrow neutrophils (BMN) from female mice have an enhanced ability to kill S. aureus ex vivo compared with those of male mice. However, the mechanism(s) driving this sex bias in neutrophil killing have not been reported. Given the role of opsonins such as complement, as well as their receptors, in S. aureus recognition and clearance, we investigated their contribution to the enhanced bactericidal capacity of female BMN. We found that levels of C3 in the serum and CR3 (CD11b/CD18) on the surface of BMN were higher in female compared with male mice. Consistent with increased CR3 expression following TNF-α priming, production of reactive oxygen species (ROS), an important bactericidal effector, was also increased in female versus male BMN in response to serum-opsonized S. aureus Furthermore, blocking CD11b reduced both ROS levels and S. aureus killing by murine BMN from both sexes. However, at the same concentration of CD11b blocking Ab, S. aureus killing by female BMN was greatly reduced compared with those from male mice, suggesting CR3-dependent differences in bacterial killing between sexes. Overall, this work highlights the contributions of CR3, C3, and ROS to innate sex bias in the neutrophil response to S. aureus Given that neutrophils are crucial for S. aureus clearance, understanding the mechanism(s) driving the innate sex bias in neutrophil bactericidal capacity could identify novel host factors important for host defense against S. aureus.


Subject(s)
Macrophage-1 Antigen/metabolism , Neutrophils/physiology , Staphylococcal Infections/immunology , Staphylococcus aureus/physiology , Animals , Antibodies, Blocking/metabolism , CD11b Antigen/immunology , CD11b Antigen/metabolism , Complement C3/metabolism , Cytotoxicity, Immunologic , Female , Host-Pathogen Interactions , Humans , Male , Mice , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Sex Characteristics , Sex Factors
14.
Wound Repair Regen ; 28(4): 470-479, 2020 07.
Article in English | MEDLINE | ID: mdl-32428975

ABSTRACT

Sex differences in susceptibility to ischemia/reperfusion injury have been documented in humans. Premenopausal women have a lower risk of ischemic heart disease than age-matched men, whereas after menopause, the risk is similar or even higher in women. However, little is known about the effects of sex on myocutaneous ischemia/reperfusion. To explore sex differences in wound revascularization, we utilized a murine myocutaneous flap model of graded ischemia. A cranial-based, peninsular-shaped, myocutaneous flap was surgically created on the dorsum of male and female mice. Physiological, pathological, immunohistochemical, and molecular parameters were analyzed. Flaps created on female mice were re-attached to the recipient site resulting in nearly complete viability at post-operative day 10. In contrast, distal full-thickness myocutaneous necrosis was evident at 10 days post-surgery in male mice. Over the 10 day study interval, laser speckle imaging documented functional revascularization in all flap regions in female mice, but minimal distal flap reperfusion in male mice. Day 10 immunostained histologic sections confirmed significant increases in distal flap vessel count and vascular surface area in female compared to male mice. RT-PCR demonstrated significant differences in growth factor and metabolic gene expression between female and male mice at day 10. In conclusion, in a graded-ischemia wound healing model, flap revascularization was more effective in female mice. The recognition and identification of sex-specific wound healing differences may lead to a better understanding of the underlying mechanisms of myocutaneous revascularization and drive novel discovery to improve soft tissue wound healing following tissue transfer for traumatic injury and cancer resection.


Subject(s)
Myocutaneous Flap/blood supply , Myocutaneous Flap/pathology , Neovascularization, Physiologic/physiology , Reperfusion Injury/pathology , Sex Characteristics , Wound Healing/physiology , Animals , Carnitine O-Palmitoyltransferase/genetics , Female , Fibroblast Growth Factor 2/genetics , Forkhead Box Protein O1/genetics , Hexokinase/genetics , Kruppel-Like Transcription Factors/genetics , Laser Speckle Contrast Imaging , Male , Mice , Necrosis , Neovascularization, Physiologic/genetics , Phosphofructokinase-2/genetics , Receptor, Notch1/genetics , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Transcriptome , Vascular Endothelial Growth Factor A/genetics , Wound Healing/genetics
15.
Sci Transl Med ; 12(528)2020 01 29.
Article in English | MEDLINE | ID: mdl-31996464

ABSTRACT

Human obesity has become a global health epidemic, with few safe and effective pharmacological therapies currently available. The systemic loss of ovarian estradiol (E2) in women after menopause greatly increases the risk of obesity and metabolic dysfunction, revealing the critical role of E2 in this setting. The salutary effects of E2 are traditionally attributed to the classical estrogen receptors ERα and ERß, with the contribution of the G protein-coupled estrogen receptor (GPER) still largely unknown. Here, we used ovariectomy- and diet-induced obesity (DIO) mouse models to evaluate the preclinical activity of GPER-selective small-molecule agonist G-1 (also called Tespria) against obesity and metabolic dysfunction. G-1 treatment of ovariectomized female mice (a model of postmenopausal obesity) reduced body weight and improved glucose homeostasis without changes in food intake, fuel source usage, or locomotor activity. G-1-treated female mice also exhibited increased energy expenditure, lower body fat content, and reduced fasting cholesterol, glucose, insulin, and inflammatory markers but did not display feminizing effects on the uterus (imbibition) or beneficial effects on bone health. G-1 treatment of DIO male mice did not elicit weight loss but prevented further weight gain and improved glucose tolerance, indicating that G-1 improved glucose homeostasis independently of its antiobesity effects. However, in ovariectomized DIO female mice, G-1 continued to elicit weight loss, reflecting possible sex differences in the mechanisms of G-1 action. In conclusion, this work demonstrates that GPER-selective agonism is a viable therapeutic approach against obesity, diabetes, and associated metabolic abnormalities in multiple preclinical male and female models.


Subject(s)
Diabetes Mellitus/drug therapy , Obesity/drug therapy , Receptors, G-Protein-Coupled/agonists , Adipose Tissue/pathology , Adiposity/drug effects , Animals , Cell Respiration , Disease Models, Animal , Energy Metabolism , Estrogens/deficiency , Female , Genes, Mitochondrial , Glucose/metabolism , Homeostasis , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Mitochondria/genetics , Obesity/complications , Ovariectomy , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Treatment Outcome , Up-Regulation , Weight Gain
17.
Cell Chem Biol ; 26(12): 1692-1702.e5, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31706983

ABSTRACT

Estrogen exerts extensive and diverse effects throughout the body of women. In addition to the classical nuclear estrogen receptors (ERα and ERß), the G protein-coupled estrogen receptor GPER is an important mediator of estrogen action. Existing ER-targeted therapeutic agents act as GPER agonists. Here, we report the identification of a small molecule, named AB-1, with the previously unidentified activity of high selectivity for binding classical ERs over GPER. AB-1 also possesses a unique functional activity profile as an agonist of transcriptional activity but an antagonist of rapid signaling through ERα. Our results define a class of small molecules that discriminate between the classical ERs and GPER, as well as between modes of signaling within the classical ERs. Such an activity profile, if developed into an ER antagonist, could represent an opportunity for the development of first-in-class nuclear hormone receptor-targeted therapeutics for breast cancer exhibiting reduced acquired and de novo resistance.


Subject(s)
Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Ligands , Signal Transduction , Animals , Cell Proliferation/drug effects , Estradiol/pharmacology , Estrogen Receptor alpha/antagonists & inhibitors , Estrogen Receptor beta/antagonists & inhibitors , Female , Forkhead Box Protein O3/genetics , Forkhead Box Protein O3/metabolism , Humans , MCF-7 Cells , Mice , Mice, Inbred C57BL , Protein Binding , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects , Transcription, Genetic/drug effects , Uterus/drug effects , Uterus/metabolism
18.
PLoS One ; 14(10): e0224064, 2019.
Article in English | MEDLINE | ID: mdl-31647839

ABSTRACT

INTRODUCTION: Differences in breast cancer survival by race and ethnicity are often assumed to be a fairly recent phenomenon, and are hypothesized to have arisen due to gaps in receipt of screening or therapy. The emergence of these differences in calendar time have implications for identification of their origin. We sought to determine whether breast cancer survival differences by race or ethnicity arose in tandem with the advent of screening or therapeutic advances. MATERIALS AND METHODS: A cohort of women diagnosed with invasive breast cancer from 1975-2009 in 18 population-based registries were followed for five-year breast cancer cause-specific survival. Differences in survival according to race/ethnicity and estrogen receptor status were quantified in Cox proportional hazards models, with estimation of hazard ratios (HR), 95% confidence intervals (CI), and absolute risk differences. For 2010, we also assessed differences in survival by breast cancer subtypes defined by hormone receptor and Her2/neu status. RESULTS: Among over 930,000 women, initial differences in five-year breast cancer-specific survival by race became apparent among 1975-1979 diagnoses and continued to be evident, with stronger disparities apparent in those of Black vs. White Non-Hispanic (WNH) race and among estrogen-receptor positive vs. negative disease. Within breast cancer subtype, all included race/ethnic groups experienced disparate survival in comparison with WNH women for triple-negative disease. Black women had a consistent gap in absolute survival of .10-.12, compared with WNH women, from 1975-1979 through all included time periods, such that 5- year survival of Black women diagnosed in 2005-09 lagged more than 20 years behind that of WNH women. DISCUSSION: Survival differed by race for diagnoses that predate the introduction of mammographic screening and most therapeutic advances. Absolute differences in survival by race and ethnicity have remained almost constant over 40 years of observation, suggesting early origins for some contributors.


Subject(s)
Breast Neoplasms/ethnology , Breast Neoplasms/mortality , Ethnicity/statistics & numerical data , Mortality/trends , Racial Groups/statistics & numerical data , Adult , Aged , Aged, 80 and over , Breast Neoplasms/pathology , Female , Humans , Middle Aged , Prognosis , Retrospective Studies , Survival Rate
19.
NPJ Breast Cancer ; 5: 33, 2019.
Article in English | MEDLINE | ID: mdl-31602394

ABSTRACT

Obesity exerts adverse effects on breast cancer survival, but the means have not been fully elucidated. We evaluated obesity as a contributor to breast cancer survival according to tumor molecular subtypes in a population-based case-cohort study using data from the Surveillance Epidemiology and End Results (SEER) program. We determined whether obese women were more likely to be diagnosed with poor prognosis tumor characteristics and quantified the contribution of obesity to survival. Hazard ratios (HRs) and 95% confidence intervals (CI) were calculated via Cox multivariate models. The effect of obesity on survival was evaluated among 859 incident breast cancers (subcohort; 15% random sample; median survival 7.8 years) and 697 deaths from breast cancer (cases; 100% sample). Obese women had a 1.7- and 1.8-fold increased risk of stage III/IV disease and grade 3/4 tumors, respectively. Obese women with Luminal A- and Luminal B-like breast cancer were 1.8 (95% CI 1.3-2.5) and 2.2 (95% CI 0.9-5.0) times more likely to die from their cancer compared to normal weight women. In mediation analyses, the proportion of excess mortality attributable to tumor characteristics was 36.1% overall and 41% and 38% for Luminal A- and Luminal B-like disease, respectively. Obesity was not associated with breast cancer-specific mortality among women who had Her2-overexpressing or triple-negative tumors. Obesity may influence hormone-positive breast cancer-specific mortality in part through fostering poor prognosis tumors. When tumor biology is considered as part of the causal pathway, the public health impact of obesity on breast cancer survival may be greater than previously estimated.

20.
Steroids ; 152: 108493, 2019 12.
Article in English | MEDLINE | ID: mdl-31518595

ABSTRACT

Endocrine therapy is an effective option for the treatment of estrogen receptor alpha (ERα)-positive breast cancers. Unfortunately, a large fraction of women relapse with endocrine-resistant tumors. The presence of constitutively active ERα mutants, found in a subset of relapse tumors, is thought to be an important endocrine resistance mechanism and has prompted the search for more effective anti-hormone drugs that can effectively inhibit these mutant versions of the receptor. The G protein-coupled estrogen receptor (GPER) is also thought to contribute to the development of endocrine resistance, in part, due to its activation by clinically used selective estrogen receptor modulators and downregulators (SERMs/SERDs). Therefore, next-generation drugs should be screened for potential activity towards GPER. Here, we highlight the need for truly ERα-selective SERMs and SERDs that do not cross-react with GPER for the treatment of ERα-positive breast cancers.


Subject(s)
Antineoplastic Agents, Hormonal/pharmacology , Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm/drug effects , Estrogen Antagonists/pharmacology , Estrogen Receptor alpha/antagonists & inhibitors , Receptors, Estrogen/antagonists & inhibitors , Receptors, G-Protein-Coupled/antagonists & inhibitors , Breast Neoplasms/metabolism , Estrogen Receptor alpha/metabolism , Female , Humans , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...