Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters










Publication year range
1.
Eur Phys J E Soft Matter ; 47(4): 22, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563859

ABSTRACT

We compare three different setups for measuring cell-cell adhesion. We show that the measured strength depends on the type of setup that is used. For identical cells different assays measure different detachment forces. This can be understood from the fact that cell-cell detachment is a global property of the system. We also analyse the role of external force and line tension on contact angle and cell-cell detachment. Comparison with the experiments suggest that viscous forces play an important role in the process. We dedicate this article to Fyl Pincus who for many of us is an example to be followed not only for outstanding science but also for a marvelous human behavior.


Subject(s)
Cell Adhesion
2.
Phys Rev Lett ; 132(5): 058401, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38364140

ABSTRACT

Spatiotemporal coordination of chromatin and subnuclear compartments is crucial for cells. Numerous enzymes act inside nucleus-some of those transiently link and pass two chromatin segments. Here, we study how such an active perturbation affects fluctuating dynamics of an inclusion in the chromatic medium. Using numerical simulations and a versatile effective model, we categorize inclusion dynamics into three distinct modes. The transient-link-and-pass activity speeds up inclusion dynamics by affecting a slow mode related to chromatin remodeling, viz., size and shape of the chromatin meshes.


Subject(s)
Chromatin Assembly and Disassembly , Chromatin , Cell Nucleus
3.
Dev Cell ; 58(4): 267-277.e5, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36800994

ABSTRACT

The number of cells in tissues is controlled by cell division and cell death, and its misregulation could lead to pathological conditions such as cancer. To maintain the cell numbers, a cell-elimination process called apoptosis also stimulates the proliferation of neighboring cells. This mechanism, apoptosis-induced compensatory proliferation, was originally described more than 40 years ago. Although only a limited number of the neighboring cells need to divide to compensate for the apoptotic cell loss, the mechanisms that select cells to divide have remained elusive. Here, we found that spatial inhomogeneity in Yes-associated protein (YAP)-mediated mechanotransduction in neighboring tissues determines the inhomogeneity of compensatory proliferation in Madin-Darby canine kidney (MDCK) cells. Such inhomogeneity arises from the non-uniform distribution of nuclear size and the non-uniform pattern of mechanical force applied to neighboring cells. Our findings from a mechanical perspective provide additional insight into how tissues precisely maintain homeostasis.


Subject(s)
Apoptosis , Mechanotransduction, Cellular , Animals , Dogs , Apoptosis/physiology , Cell Death , Cell Division , Madin Darby Canine Kidney Cells , Cell Proliferation/physiology
4.
Nat Phys ; 19: 132-141, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36686215

ABSTRACT

Epithelia act as a barrier against environmental stress and abrasion and in vivo they are continuously exposed to environments of various mechanical properties. The impact of this environment on epithelial integrity remains elusive. By culturing epithelial cells on 2D hydrogels, we observe a loss of epithelial monolayer integrity through spontaneous hole formation when grown on soft substrates. Substrate stiffness triggers an unanticipated mechanical switch of epithelial monolayers from tensile on soft to compressive on stiff substrates. Through active nematic modelling, we find that spontaneous half-integer defect formation underpinning large isotropic stress fluctuations initiate hole opening events. Our data show that monolayer rupture due to high tensile stress is promoted by the weakening of cell-cell junctions that could be induced by cell division events or local cellular stretching. Our results show that substrate stiffness provides feedback on monolayer mechanical state and that topological defects can trigger stochastic mechanical failure, with potential application towards a mechanistic understanding of compromised epithelial integrity during immune response and morphogenesis.

5.
Phys Rev E ; 106(5-1): 054607, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36559431

ABSTRACT

We show that dislocations in active two-dimensional (2D) smectic liquid crystals with underlying rotational symmetry are always unbound in the presence of noise, meaning the active smectic phase does not exist for nonzero noise in d=2. The active smectic phase can, like equilibrium smectics in 2D, be stabilized by applying rotational symmetry-breaking fields; however, even in the presence of such fields, active smectics are still much less stable against noise than equilibrium ones, when the symmetry-breaking field(s) are weak.

6.
Elife ; 112022 12 06.
Article in English | MEDLINE | ID: mdl-36472500

ABSTRACT

Spatial organization of chromatin plays a critical role in genome regulation. Previously, various types of affinity mediators and enzymes have been attributed to regulate spatial organization of chromatin from a thermodynamics perspective. However, at the mechanistic level, enzymes act in their unique ways and perturb the chromatin. Here, we construct a polymer physics model following the mechanistic scheme of Topoisomerase-II, an enzyme resolving topological constraints of chromatin, and investigate how it affects interphase chromatin organization. Our computer simulations demonstrate Topoisomerase-II's ability to phase separate chromatin into eu- and heterochromatic regions with a characteristic wall-like organization of the euchromatic regions. We realized that the ability of the euchromatic regions to cross each other due to enzymatic activity of Topoisomerase-II induces this phase separation. This realization is based on the physical fact that partial absence of self-avoiding interaction can induce phase separation of a system into its self-avoiding and non-self-avoiding parts, which we reveal using a mean-field argument. Furthermore, motivated from recent experimental observations, we extend our model to a bidisperse setting and show that the characteristic features of the enzymatic activity-driven phase separation survive there. The existence of these robust characteristic features, even under the non-localized action of the enzyme, highlights the critical role of enzymatic activity in chromatin organization.


Subject(s)
Chromatin , Genome , Interphase , DNA Topoisomerases, Type II/genetics , Polymers
7.
Biomech Model Mechanobiol ; 21(5): 1511-1530, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36057053

ABSTRACT

Tissue layers can generally slide at the interface, accompanied by the dissipation due to friction. Nevertheless, it remains elusive how force could propagate in a tissue with such interfacial friction. Here, we elaborate the force dynamics in a prototypical multilayer system in which an epithelial monolayer was cultivated upon an elastic substrate in contact with a hard surface, and discover a novel mechanism of pronounced force propagation over a long distance due to interfacial dynamics between substrate layers. We derived an analytical model for the dynamics of the elastic substrate under the shear stress provided by the cell layer at the surface boundary and the friction at bottom. The model reveals that sliding between substrate layers leads to an expanding stretch regime from a shear regime of substrate deformation in time and space. The regime boundary propagating diffusively with a speed depending on the stiffness, thickness, and slipperiness of the substrate, is a robust nature of a deformed elastic sheet with interfacial friction. These results shed new light on force propagation in tissues and our model could serve as a basis for studies of such propagation in a more complex tissue environment.


Subject(s)
Mechanical Phenomena , Friction , Elasticity , Stress, Mechanical
8.
Sci Adv ; 8(37): eabn5406, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36103541

ABSTRACT

Three-dimensional collective epithelial rotation around a given axis represents a coordinated cellular movement driving tissue morphogenesis and transformation. Questions regarding these behaviors and their relationship with substrate curvatures are intimately linked to spontaneous active matter processes and to vital morphogenetic and embryonic processes. Here, using interdisciplinary approaches, we study the dynamics of epithelial layers lining different cylindrical surfaces. We observe large-scale, persistent, and circumferential rotation in both concavely and convexly curved cylindrical tissues. While epithelia of inverse curvature show an orthogonal switch in actomyosin network orientation and opposite apicobasal polarities, their rotational movements emerge and vary similarly within a common curvature window. We further reveal that this persisting rotation requires stable cell-cell adhesion and Rac-1-dependent cell polarity. Using an active polar gel model, we unveil the different relationships of collective cell polarity and actin alignment with curvatures, which lead to coordinated rotational behavior despite the inverted curvature and cytoskeleton order.

9.
Phys Rev Lett ; 129(11): 118001, 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36154433

ABSTRACT

Cell monolayers are a central model system in the study of tissue biophysics. In vivo, epithelial tissues are curved on the scale of microns, and the curvature's role in the onset of spontaneous tissue flows is still not well understood. Here, we present a hydrodynamic theory for an apical-basal asymmetric active nematic gel on a curved strip. We show that surface curvature qualitatively changes monolayer motion compared with flat space: the resulting flows can be thresholdless, and the transition to motion may change from continuous to discontinuous. Surface curvature, friction, and active tractions are all shown to control the flow pattern selected, from simple shear to vortex chains.


Subject(s)
Hydrodynamics , Models, Biological , Biophysics/methods , Friction , Motion
10.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Article in English | MEDLINE | ID: mdl-33947815

ABSTRACT

We use a theoretical approach to examine the effect of a radial fluid flow or electric current on the growth and homeostasis of a cell spheroid. Such conditions may be generated by a drain of micrometric diameter. To perform this analysis, we describe the tissue as a continuum. We include active mechanical, electric, and hydraulic components in the tissue material properties. We consider a spherical geometry and study the effect of the drain on the dynamics of the cell aggregate. We show that a steady fluid flow or electric current imposed by the drain could be able to significantly change the spheroid long-time state. In particular, our work suggests that a growing spheroid can systematically be driven to a shrinking state if an appropriate external field is applied. Order-of-magnitude estimates suggest that such fields are of the order of the indigenous ones. Similarities and differences with the case of tumors and embryo development are briefly discussed.


Subject(s)
Biophysics , Spheroids, Cellular/chemistry , Animals , Humans , Models, Biological , Neoplasms
11.
J R Soc Interface ; 18(176): 20201010, 2021 03.
Article in English | MEDLINE | ID: mdl-33715401

ABSTRACT

We analyse the stem cell nucleus shape fluctuation spectrum obtained from optical confocal microscopy on an hour time scale with 10 s resolution. In particular, we investigate the angular and time dependencies of these fluctuations, define appropriate correlation functions that reveal the fundamentally out of equilibrium nature of the observed fluctuations as well as their global anisotropy. Langevin equations respecting the symmetry of the system allow us to model the damped oscillatory behaviour of the time correlations.


Subject(s)
Nuclear Envelope , Stem Cells , Anisotropy
12.
Biophys J ; 119(8): 1590-1605, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33010236

ABSTRACT

We present a minimal model to study the effects of pH on liquid phase separation of macromolecules. Our model describes a mixture composed of water and macromolecules that exist in three different charge states and have a tendency to phase separate. This phase separation is affected by pH via a set of chemical reactions describing protonation and deprotonation of macromolecules, as well as self-ionization of water. We consider the simple case in which interactions are captured by Flory-Huggins interaction parameters corresponding to Debye screening lengths shorter than a nanometer, which is relevant to proteins inside biological cells under physiological conditions. We identify the conjugate thermodynamic variables at chemical equilibrium and discuss the effective free energy at fixed pH. First, we study phase diagrams as a function of macromolecule concentration and temperature at the isoelectric point of the macromolecules. We find a rich variety of phase diagram topologies, including multiple critical points, triple points, and first-order transition points. Second, we change the pH relative to the isoelectric point of the macromolecules and study how phase diagrams depend on pH. We find that these phase diagrams as a function of pH strongly depend on whether oppositely charged macromolecules or neutral macromolecules have a stronger tendency to phase separate. One key finding is that we predict the existence of a reentrant behavior as a function of pH. In addition, our model predicts that the region of phase separation is typically broader at the isoelectric point. This model could account for both in vitro phase separation of proteins as a function of pH and protein phase separation in yeast cells for pH values close to the isoelectric point of many cytosolic proteins.


Subject(s)
Proteins , Water , Hydrogen-Ion Concentration , Macromolecular Substances , Thermodynamics
13.
Proc Natl Acad Sci U S A ; 116(39): 19264-19273, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31492815

ABSTRACT

We discuss the physical mechanisms that promote or suppress the nucleation of a fluid-filled lumen inside a cell assembly or a tissue. We discuss lumen formation in a continuum theory of tissue material properties in which the tissue is described as a 2-fluid system to account for its permeation by the interstitial fluid, and we include fluid pumping as well as active electric effects. Considering a spherical geometry and a polarized tissue, our work shows that fluid pumping and tissue flexoelectricity play a crucial role in lumen formation. We furthermore explore the large variety of long-time states that are accessible for the cell aggregate and its lumen. Our work reveals a role of the coupling of mechanical, electrical, and hydraulic phenomena in tissue lumen formation.


Subject(s)
Extracellular Fluid/metabolism , Extracellular Space/physiology , Models, Biological , Biophysical Phenomena , Electrophysiological Phenomena , Hydrodynamics , Permeability , Spheroids, Cellular/physiology
14.
Biophys J ; 117(5): 880-891, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31427070

ABSTRACT

Axonal beading, or the formation of a series of swellings along the axon, and retraction are commonly observed shape transformations that precede axonal atrophy in Alzheimer's disease, Parkinson's disease, and other neurodegenerative conditions. The mechanisms driving these morphological transformations are poorly understood. Here, we report controlled experiments that can induce either beading or retraction and follow the time evolution of these responses. By making quantitative analysis of the shape modes under different conditions, measurement of membrane tension, and using theoretical considerations, we argue that membrane tension is the main driving force that pushes cytosol out of the axon when microtubules are degraded, causing axonal thinning. Under pharmacological perturbation, atrophy is always retrograde, and this is set by a gradient in the microtubule stability. The nature of microtubule depolymerization dictates the type of shape transformation, vis-à-vis beading or retraction. Elucidating the mechanisms of these shape transformations may facilitate development of strategies to prevent or arrest axonal atrophy due to neurodegenerative conditions.


Subject(s)
Axons/metabolism , Microtubules/metabolism , Actins/metabolism , Animals , Atrophy , Axons/drug effects , Biomechanical Phenomena , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Chick Embryo , Growth Cones/drug effects , Growth Cones/metabolism , Imaging, Three-Dimensional , Membranes , Microtubules/drug effects , Nocodazole/pharmacology , Polymerization , Thiazolidines/pharmacology
15.
Nat Phys ; 15(7): 689-695, 2019 Jul.
Article in English | MEDLINE | ID: mdl-33790983

ABSTRACT

Cells sense the rigidity of their environment through localized pinching, which occurs when myosin molecular motors generate contractions within actin filaments anchoring the cell to its surroundings. We present high-resolution experiments performed on these elementary contractile units in cells. Our experimental results challenge the current understanding of molecular motor force generation. Surprisingly, bipolar myosin filaments generate much larger forces per motor than measured in single molecule experiments. Further, contraction to a fixed distance, followed by relaxation at the same rate, is observed over a wide range of matrix rigidities. Lastly, step-wise displacements of the matrix contacts are apparent during both contraction and relaxation. Building upon a generic two-state model of molecular motor collections, we interpret these unexpected observations as spontaneously emerging features of a collective motor behavior. Our approach explains why, in the cellular context, collections of resilient and slow motors contract in a stepwise fashion while collections of weak and fast motors do not. We thus rationalize the specificity of motor contractions implied in rigidity sensing compared to previous in vitro observations.

16.
Phys Rev E ; 100(6-1): 062602, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31962504

ABSTRACT

The simplest extensions of single-particle dynamics in a momentum-conserving active fluid-an active suspension of two colloidal particles or a single particle confined by a wall-exhibit strong departures from Boltzmann behavior, resulting in either a breakdown of an effective temperature description or a steady state with nonzero-entropy production rate. This is a consequence of hydrodynamic interactions that introduce multiplicative noise in the stochastic description of particle positions. This results in fluctuation-induced interactions that depend on distance as a power law. We find that the dynamics of activated colloids in a passive fluid, with stochastic forcing localized on the particle, is different from that of passive colloids in an active fluctuating fluid.

17.
Phys Rev E ; 98(2-1): 022409, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30253464

ABSTRACT

We theoretically explore fluidization of epithelial tissues by active T1 neighbor exchanges. We show that the geometry of cell-cell junctions encodes important information about the local features of the energy landscape, which we support by an elastic theory of T1 transformations. Using a 3D vertex model, we show that the degree of active noise driving forced cell rearrangements governs the stress-relaxation timescale of the tissue. We study tissue response to in-plane shear at different timescales. At short time, the tissue behaves as a solid, whereas its long-time fluid behavior can be associated with an effective viscosity which scales with the rate of active T1 transformations. Furthermore, we develop a coarse-grained theory, where we treat the tissue as an active fluid and confirm the results of the vertex model. The impact of cell rearrangements on tissue shape is illustrated by studying axial compression of an epithelial tube.


Subject(s)
Epithelium/physiology , Models, Biological , Stress, Mechanical , Viscosity
18.
Proc Natl Acad Sci U S A ; 115(21): E4751-E4757, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29735699

ABSTRACT

We model the dynamics of formation of intercellular secretory lumens. Using conservation laws, we quantitatively study the balance between paracellular leaks and the build-up of osmotic pressure in the lumen. Our model predicts a critical pumping threshold to expand stable lumens. Consistently with experimental observations in bile canaliculi, the model also describes a transition between a monotonous and oscillatory regime during luminogenesis as a function of ion and water transport parameters. We finally discuss the possible importance of regulation of paracellular leaks in intercellular tubulogenesis.


Subject(s)
Hepatocytes/cytology , Hepatocytes/physiology , Intercellular Junctions/chemistry , Intercellular Junctions/physiology , Models, Theoretical , Osmosis , Animals , Cells, Cultured , Rats
19.
Cell ; 170(1): 172-184.e11, 2017 Jun 29.
Article in English | MEDLINE | ID: mdl-28648660

ABSTRACT

Membrane scission is essential for intracellular trafficking. While BAR domain proteins such as endophilin have been reported in dynamin-independent scission of tubular membrane necks, the cutting mechanism has yet to be deciphered. Here, we combine a theoretical model, in vitro, and in vivo experiments revealing how protein scaffolds may cut tubular membranes. We demonstrate that the protein scaffold bound to the underlying tube creates a frictional barrier for lipid diffusion; tube elongation thus builds local membrane tension until the membrane undergoes scission through lysis. We call this mechanism friction-driven scission (FDS). In cells, motors pull tubes, particularly during endocytosis. Through reconstitution, we show that motors not only can pull out and extend protein-scaffolded tubes but also can cut them by FDS. FDS is generic, operating even in the absence of amphipathic helices in the BAR domain, and could in principle apply to any high-friction protein and membrane assembly.


Subject(s)
Endocytosis , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Acyltransferases/chemistry , Acyltransferases/metabolism , Animals , Biomechanical Phenomena , Friction , Humans , Lipid Metabolism , Protein Domains , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...