Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Prosthodont ; : 1-24, 2024 08 02.
Article in English | MEDLINE | ID: mdl-39110949

ABSTRACT

Purpose: To investigate the available evidence on the accuracy of conventional and digital workflows for complete arch implant supported frameworks. Materials and methods: This scoping review was conducted according to the 5-stage framework of Arksey and O'Malley. A systematic literature search was performed adhering to the PRISMA guidelines to identify studies with a direct comparison of conventional and digital methods for the fabrication of complete arch implant supported frameworks. 58 in-vitro studies with the focus on edentulous arches with at least four implants published between 2000 and 2024 were included. The reported outcomes were examined to determine the value of a statistical analysis for adding up the individual errors to a cumulative error of the workflow. Results: Evidence on the accuracy assessment of digital and conventional workflows for complete arch implant supported frameworks is available. However, also studies with the same assessment methods and outcome units appear to be too heterogeneous to perform a statistical analysis of error accumulation. While there is no consensus in the impression and cast fabrication stage, digital techniques show a superior accuracy for the fabrication of complete arch implant supported frameworks compared to conventional casting. Conclusion: In-vitro studies assessing the accuracy of entire workflows and classifying their outcomes regarding the clinical relevance are lacking.

2.
J Esthet Restor Dent ; 36(1): 94-106, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38009505

ABSTRACT

OBJECTIVE: To analyze the influence of restoration design (partial-coverage restoration vs. crown) and ceramic layer thickness on the performance and failure loads of CAD/CAM-fabricated lithium disilicate (LDS) reconstructions on molars after fatigue. MATERIALS AND METHODS: Seventy-two posterior monolithic CAD/CAM-fabricated LDS restorations (IPS e.max CAD, Ivoclar Vivadent) with different occlusal/buccal ceramic layer thicknesses (1.5/0.8, 1.0/0.6, and 0.5/0.4 mm) and restoration designs (PCR: non-retentive full-veneer/partial-coverage restoration, C: crown,) were investigated and divided into six groups (n = 12, test: PCR-1.5, PCR-1.0, PCR-0.5; control: C-1.5, C-1.0, C-0.5). LDS restorations were adhesively bonded (Variolink Esthetic DC, Ivoclar Vivadent) to dentin-analogue composite dies (Z100, 3M ESPE). All specimens were subjected to thermomechanical loading (1.2 million cycles, 49 N, 1.6 Hz, 5-55°C) and exposed to single load to failure testing. Failure analysis was performed with light and scanning electron microscopies. Data were statistically analyzed using ANOVA, Tukey-Test, and t-test (p < 0.05). RESULTS: Eight crown samples (C-0.5) and one PCR specimen (PCR-0.5) revealed cracks after fatigue, resulting in an overall success rate of 87.5% (crowns: 75%, PCRs: 96.88%). Direct comparisons of PCRs versus crowns for thicknesses of 0.5 mm (p < 0.001) and 1.0 mm (p = 0.004) were significant and in favor of PCRs. Minimally invasive PCRs (0.5 and 1.0 mm) outperformed crowns with the identical ceramic thickness. No difference was detected (p = 0.276) between thickness 1.5 mm PCRs and crowns. CONCLUSIONS: Minimally invasive monolithic CAD/CAM-fabricated posterior LDS PCRs (0.5 and 1.0 mm) resulted in superior failure load values compared to minimally invasive crowns. Minimally invasive crowns (0.5 mm) are prone to cracks after fatigue. CLINICAL SIGNIFICANCE: Minimally invasive CAD/CAM-fabricated LDS PCR restorations with a non-retentive preparation design should be considered over single crowns for molar rehabilitation.


Subject(s)
Acrylic Resins , Composite Resins , Crowns , Dental Porcelain , Polyurethanes , Humans , Ceramics , Computer-Aided Design , Fatigue , Materials Testing , Dental Restoration Failure , Dental Stress Analysis
3.
Clin Oral Implants Res ; 34(11): 1217-1229, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37565379

ABSTRACT

OBJECTIVE: To analyze the influence of titanium-base (straight [SSC]/angulated-screw-channel [ASC]) on failure-loads and bending-moments of two-piece ceramic and titanium-zirconium implants restored with monolithic-zirconia crowns after fatigue. MATERIALS AND METHODS: Thirty-two anterior monolithic-screw-retained zirconia crowns were divided into four groups (n = 8/group) according to the factors: (1) type of implant material: two-piece titanium-zirconium implant (Ti-Zr; control-group) versus two-piece ceramic implant (CI; test-group) and (2) type of titanium-base: SSC (0° angle) versus ASC (25°). An intact implant was used for field emission gun-scanning electronic microscopy (FEG-SEM) characterization and Raman spectroscopy for phase analyses and residual stress quantification. All samples were exposed to fatigue with thermodynamic loading (1.2-million-cycles, 49 N, 1.6 Hz, 5-55°C) at a 30° angle. Surviving specimens were loaded until failure (SLF) and bending moments were recorded. Failed samples were examined using light microscope and SEM. Statistical analyses included ANOVA and Mann-Whitney U-test. RESULTS: Raman-spectroscopy revealed the presence of residual compressive stresses. FEG-SEM revealed a roughened surface between threads and polished surface at the cervical-collar of the ceramic implant. All samples survived fatigue and were free of complications. Mean bending-moments (±SD) were: Ti-Zr-0: 241 ± 45 N cm, Ti-Zr-25: 303 ± 86 N cm, CI-0: 326 ± 58 N cm, CI-25: 434 ± 71 N cm. Titanium-base and implant-material had significant effects in favor of ASC titanium bases (p = .001) and ceramic-implants (p < .001). Failure analysis after SLF revealed severe fractures in ceramic implants, whereas titanium implants were restricted to plastic deformation. CONCLUSIONS: Ceramic and titanium implants exhibited high reliability after fatigue, with no failures. From a mechanical perspective, titanium bases with ASC can be recommended for both ceramic and titanium implants and are safe for clinical application.


Subject(s)
Dental Implants , Zirconium , Zirconium/chemistry , Titanium/chemistry , Reproducibility of Results , Materials Testing , Dental Abutments , Dental Implant-Abutment Design , Dental Restoration Failure , Ceramics/chemistry , Crowns , Bone Screws
SELECTION OF CITATIONS
SEARCH DETAIL