Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Neuron ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38701790

ABSTRACT

Multiple system atrophy (MSA) is an adult-onset, sporadic synucleinopathy characterized by parkinsonism, cerebellar ataxia, and dysautonomia. The genetic architecture of MSA is poorly understood, and treatments are limited to supportive measures. Here, we performed a comprehensive analysis of whole genome sequence data from 888 European-ancestry MSA cases and 7,128 controls to systematically investigate the genetic underpinnings of this understudied neurodegenerative disease. We identified four significantly associated risk loci using a genome-wide association study approach. Transcriptome-wide association analyses prioritized USP38-DT, KCTD7, and lnc-KCTD7-2 as novel susceptibility genes for MSA within these loci, and single-nucleus RNA sequence analysis found that the associated variants acted as cis-expression quantitative trait loci for multiple genes across neuronal and glial cell types. In conclusion, this study highlights the role of genetic determinants in the pathogenesis of MSA, and the publicly available data from this study represent a valuable resource for investigating synucleinopathies.

2.
Nat Biotechnol ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168980

ABSTRACT

Calling structural variations (SVs) is technically challenging, but using long reads remains the most accurate way to identify complex genomic alterations. Here we present Sniffles2, which improves over current methods by implementing a repeat aware clustering coupled with a fast consensus sequence and coverage-adaptive filtering. Sniffles2 is 11.8 times faster and 29% more accurate than state-of-the-art SV callers across different coverages (5-50×), sequencing technologies (ONT and HiFi) and SV types. Furthermore, Sniffles2 solves the problem of family-level to population-level SV calling to produce fully genotyped VCF files. Across 11 probands, we accurately identified causative SVs around MECP2, including highly complex alleles with three overlapping SVs. Sniffles2 also enables the detection of mosaic SVs in bulk long-read data. As a result, we identified multiple mosaic SVs in brain tissue from a patient with multiple system atrophy. The identified SV showed a remarkable diversity within the cingulate cortex, impacting both genes involved in neuron function and repetitive elements.

4.
Neurobiol Dis ; 188: 106343, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37926171

ABSTRACT

BACKGROUND: Variants in the GBA1 gene cause the lysosomal storage disorder Gaucher disease (GD). They are also risk factors for Parkinson's disease (PD), and modify the expression of the PD phenotype. The penetrance of GBA1 variants in PD is incomplete, and the ability to determine who among GBA1 variant carriers are at higher risk of developing PD, would represent an advantage for prognostic and trial design purposes. OBJECTIVES: To compare the motor and non-motor phenotype of GBA1 carriers and non-carriers. METHODS: We present the cross-sectional results of the baseline assessment from the RAPSODI study, an online assessment tool for PD patients and GBA1 variant carriers. The assessment includes clinically validated questionnaires, a tap-test, the University of Pennsyllvania Smell Identification Test and cognitive tests. Additional, homogeneous data from the PREDICT-PD cohort were included. RESULTS: A total of 379 participants completed all parts of the RAPSODI assessment (89 GBA1-negative controls, 169 GBA1-negative PD, 47 GBA1-positive PD, 47 non-affected GBA1 carriers, 27 GD). Eighty-six participants were recruited through PREDICT-PD (43 non-affected GBA1 carriers and 43 GBA1-negative controls). GBA1-positive PD patients showed worse performance in visual cognitive tasks and olfaction compared to GBA1-negative PD patients. No differences were detected between non-affected GBA1 carriers carriers and GBA1-negative controls. No phenotypic differences were observed between any of the non-PD groups. CONCLUSIONS: Our results support previous evidence that GBA1-positive PD has a specific phenotype with more severe non-motor symptoms. However, we did not reproduce previous findings of more frequent prodromal PD signs in non-affected GBA1 carriers.


Subject(s)
Gaucher Disease , Parkinson Disease , Humans , Cross-Sectional Studies , Parkinson Disease/genetics , Phenotype , Penetrance , Gaucher Disease/genetics , Prodromal Symptoms
6.
bioRxiv ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37609320

ABSTRACT

The presence of somatic mutations, including copy number variants (CNVs), in the brain is well recognized. Comprehensive study requires single-cell whole genome amplification, with several methods available, prior to sequencing. We compared PicoPLEX with two recent adaptations of multiple displacement amplification (MDA): primary template-directed amplification (PTA) and droplet MDA, across 93 human brain cortical nuclei. We demonstrated different properties for each, with PTA providing the broadest amplification, PicoPLEX the most even, and distinct chimeric profiles. Furthermore, we performed CNV calling on two brains with multiple system atrophy and one control brain using different reference genomes. We found that 38% of brain cells have at least one Mb-scale CNV, with some supported by bulk sequencing or single-cells from other brain regions. Our study highlights the importance of selecting whole genome amplification method and reference genome for CNV calling, while supporting the existence of somatic CNVs in healthy and diseased human brain.

7.
Mov Disord ; 38(2): 338-342, 2023 02.
Article in English | MEDLINE | ID: mdl-36448620

ABSTRACT

BACKGROUND: Somatic α-synuclein (SNCA) copy number variants (CNVs, specifically gains) occur in multiple system atrophy (MSA) and Parkinson's disease brains. OBJECTIVE: The aim was to compare somatic SNCA CNVs in MSA subtypes (striatonigral degeneration [SND] and olivopontocerebellar atrophy [OPCA]) and correlate with inclusions. METHODS: We combined fluorescent in situ hybridization with immunofluorescence for α-synuclein and in some cases oligodendrocyte marker tubulin polymerization promoting protein (TPPP). RESULTS: We analyzed one to three brain regions from 24 MSA cases (13 SND, 11 OPCA). In a region preferentially affected in one subtype (putamen in SND, cerebellum in OPCA), mosaicism was higher in that subtype, and cells with CNVs were 4.2 times more likely to have inclusions. In the substantia nigra, nonpigmented cells with CNVs and TPPP were about six times more likely to have inclusions. CONCLUSIONS: The correlation between SNCA CNVs and pathology (at a regional level) and inclusions (at a single-cell level) suggests a role for somatic SNCA CNVs in MSA pathogenesis. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Multiple System Atrophy , Olivopontocerebellar Atrophies , Humans , Multiple System Atrophy/pathology , alpha-Synuclein/metabolism , DNA Copy Number Variations , In Situ Hybridization, Fluorescence
8.
Methods Mol Biol ; 2561: 205-230, 2023.
Article in English | MEDLINE | ID: mdl-36399272

ABSTRACT

The evidence for a role of somatic mutations, including copy-number variants (CNVs), in neurodegeneration has increased in the last decade. However, the understanding of the types and origins of these mutations, and their exact contributions to disease onset and progression, is still in its infancy. The use of single-cell (or nuclear) whole-genome sequencing (scWGS) has emerged as a powerful tool to answer these questions. In the present chapter, we provide laboratory and bioinformatic protocols used successfully in our lab to detect megabase-scale CNVs in single cells from multiple system atrophy (MSA) human postmortem brains, using immunolabeling prior to selection of nuclei for whole-genome amplification (WGA). We also present an unpublished comparison of scWGS generated from the same control substantia nigra (SN) sample, using the latest versions of popular WGA chemistries, MDA and PicoPLEX. We have used this protocol to focus on brain cell types most relevant to synucleinopathies (dopaminergic [DA] neurons in Parkinson's disease [PD] and oligodendrocytes in MSA), but it can be applied to any tissue and/or cell type with appropriate markers.


Subject(s)
Multiple System Atrophy , Parkinson Disease , Humans , DNA Copy Number Variations , Whole Genome Sequencing , Brain/metabolism , Multiple System Atrophy/genetics , Multiple System Atrophy/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism
9.
10.
Commun Biol ; 5(1): 670, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35794204

ABSTRACT

GBA variants carriers are at increased risk of Parkinson's disease (PD) and Lewy body dementia (LBD). The presence of pseudogene GBAP1 predisposes to structural variants, complicating genetic analysis. We present two methods to resolve recombinant alleles and other variants in GBA: Gauchian, a tool for short-read, whole-genome sequencing data analysis, and Oxford Nanopore sequencing after PCR enrichment. Both methods were concordant for 42 samples carrying a range of recombinants and GBAP1-related mutations, and Gauchian outperformed the GATK Best Practices pipeline. Applying Gauchian to sequencing of over 10,000 individuals shows that copy number variants (CNVs) spanning GBAP1 are relatively common in Africans. CNV frequencies in PD and LBD are similar to controls. Gains may coexist with other mutations in patients, and a modifying effect cannot be excluded. Gauchian detects more GBA variants in LBD than PD, especially severe ones. These findings highlight the importance of accurate GBA analysis in these patients.


Subject(s)
Lewy Body Disease , Parkinson Disease , Alleles , Glucosylceramidase/genetics , Heterozygote , Humans , Lewy Body Disease/genetics , Parkinson Disease/genetics
12.
Mov Disord ; 36(6): 1456-1460, 2021 06.
Article in English | MEDLINE | ID: mdl-34008887

ABSTRACT

BACKGROUND: GBA mutations are a common risk factor for Parkinson's disease (PD). A recent study has suggested that GBA haplotypes, identified by intronic variants, can affect age at diagnosis of PD. OBJECTIVES: In this study, we assess this hypothesis using long reads across a large cohort and the publicly available Accelerating Medicines Partnership-Parkinson's Disease (AMP-PD) cohort. METHODS: We recruited a PD cohort through the Remote Assessment of Parkinsonism Supporting Ongoing Development of Interventions in Gaucher Disease study (RAPSODI) and sequenced GBA using Oxford Nanopore technology. Genetic and clinical data on the full AMP-PD cohort were obtained from the online portal of the consortium. RESULTS: A total of 1417 participants were analyzed. There was no significant difference in age at PD diagnosis between the two main haplotypes of the GBA gene. CONCLUSIONS: GBA haplotypes do not affect age at diagnosis of PD in the two independent cohorts studied. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Glucosylceramidase/genetics , Parkinson Disease , Haplotypes , Humans , Introns , Mutation/genetics , Parkinson Disease/diagnosis , Parkinson Disease/genetics
13.
Front Neurol ; 11: 570424, 2020.
Article in English | MEDLINE | ID: mdl-33193015

ABSTRACT

Background: Somatic single nucleotide variant (SNV) mutations occur in neurons but their role in synucleinopathies is unknown. Aim: We aimed to identify disease-relevant low-level somatic SNVs in brains from sporadic patients with synucleinopathies and a monozygotic twin carrying LRRK2 G2019S, whose penetrance could be explained by somatic variation. Methods and Results: We included different brain regions from 26 Parkinson's disease (PD), one Incidental Lewy body, three multiple system atrophy cases, and 12 controls. The whole SNCA locus and exons of other genes associated with PD and neurodegeneration were deeply sequenced using molecular barcodes to improve accuracy. We selected 21 variants at 0.33-5% allele frequencies for validation using accurate methods for somatic variant detection. Conclusions: We could not detect disease-relevant somatic SNVs, however we cannot exclude their presence at earlier stages of degeneration. Our results support that coding somatic SNVs in neurodegeneration are rare, but other types of somatic variants may hold pathological consequences in synucleinopathies.

14.
Genome Res ; 30(12): 1695-1704, 2020 12.
Article in English | MEDLINE | ID: mdl-33122304

ABSTRACT

Somatic mosaicism, manifesting as single nucleotide variants (SNVs), mobile element insertions, and structural changes in the DNA, is a common phenomenon in human brain cells, with potential functional consequences. Using a clonal approach, we previously detected 200-400 mosaic SNVs per cell in three human fetal brains (15-21 wk postconception). However, structural variation in the human fetal brain has not yet been investigated. Here, we discover and validate four mosaic structural variants (SVs) in the same brains and resolve their precise breakpoints. The SVs were of kilobase scale and complex, consisting of deletion(s) and rearranged genomic fragments, which sometimes originated from different chromosomes. Sequences at the breakpoints of these rearrangements had microhomologies, suggesting their origin from replication errors. One SV was found in two clones, and we timed its origin to ∼14 wk postconception. No large scale mosaic copy number variants (CNVs) were detectable in normal fetal human brains, suggesting that previously reported megabase-scale CNVs in neurons arise at later stages of development. By reanalysis of public single nuclei data from adult brain neurons, we detected an extrachromosomal circular DNA event. Our study reveals the existence of mosaic SVs in the developing human brain, likely arising from cell proliferation during mid-neurogenesis. Although relatively rare compared to SNVs and present in ∼10% of neurons, SVs in developing human brain affect a comparable number of bases in the genome (∼6200 vs. ∼4000 bp), implying that they may have similar functional consequences.


Subject(s)
Brain/embryology , DNA, Circular/genetics , Genomic Structural Variation , Sequence Analysis, DNA/methods , Clonal Evolution , Female , Genotyping Techniques , Gestational Age , Humans , Mosaicism , Neurogenesis , Pregnancy
15.
Neurobiol Dis ; 144: 105021, 2020 10.
Article in English | MEDLINE | ID: mdl-32712267

ABSTRACT

Mosaicism, the presence of genomic differences between cells due to post-zygotic somatic mutations, is widespread in the human body, including within the brain. A role for this in neurodegenerative diseases has long been hypothesised, and technical developments are now allowing the question to be addressed in detail. The rapidly accumulating evidence is discussed in this review, with a focus on recent developments. Somatic mutations of numerous types may occur, including single nucleotide variants (SNVs), copy number variants (CNVs), and retrotransposon insertions. They could act as initiators or risk factors, especially if they arise in development, although they could also result from the disease process, potentially contributing to progression. In common sporadic neurodegenerative disorders, relevant mutations have been reported in synucleinopathies, comprising somatic gains of SNCA in Parkinson's disease and multiple system atrophy, and in Alzheimer's disease, where a novel recombination mechanism leading to somatic variants of APP, as well as an excess of somatic SNVs affecting tau phosphorylation, have been reported. In Mendelian repeat expansion disorders, mosaicism due to somatic instability, first detected 25 years ago, has come to the forefront. Brain somatic SNVs occur in DNA repair disorders, and there is evidence for a role of several ALS genes in DNA repair. While numerous challenges, and need for further validation, remain, this new, or perhaps rediscovered, area of research has the potential to transform our understanding of neurodegeneration.


Subject(s)
Mutation , Neurodegenerative Diseases/genetics , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Amyotrophic Lateral Sclerosis/genetics , DNA Copy Number Variations , DNA Repair-Deficiency Disorders/genetics , DNA Repeat Expansion , Humans , Huntington Disease/genetics , Mosaicism , Multiple System Atrophy/genetics , Mutagenesis, Insertional , Parkinson Disease/genetics , Phosphorylation/genetics , Polymorphism, Single Nucleotide , Retroelements , Synucleinopathies/genetics , alpha-Synuclein/genetics , tau Proteins
16.
PLoS Comput Biol ; 16(6): e1007933, 2020 06.
Article in English | MEDLINE | ID: mdl-32559231

ABSTRACT

A high quality benchmark for small variants encompassing 88 to 90% of the reference genome has been developed for seven Genome in a Bottle (GIAB) reference samples. However a reliable benchmark for large indels and structural variants (SVs) is more challenging. In this study, we manually curated 1235 SVs, which can ultimately be used to evaluate SV callers or train machine learning models. We developed a crowdsourcing app-SVCurator-to help GIAB curators manually review large indels and SVs within the human genome, and report their genotype and size accuracy. SVCurator displays images from short, long, and linked read sequencing data from the GIAB Ashkenazi Jewish Trio son [NIST RM 8391/HG002]. We asked curators to assign labels describing SV type (deletion or insertion), size accuracy, and genotype for 1235 putative insertions and deletions sampled from different size bins between 20 and 892,149 bp. 'Expert' curators were 93% concordant with each other, and 37 of the 61 curators had at least 78% concordance with a set of 'expert' curators. The curators were least concordant for complex SVs and SVs that had inaccurate breakpoints or size predictions. After filtering events with low concordance among curators, we produced high confidence labels for 935 events. The SVCurator crowdsourced labels were 94.5% concordant with the heuristic-based draft benchmark SV callset from GIAB. We found that curators can successfully evaluate putative SVs when given evidence from multiple sequencing technologies.


Subject(s)
Genome, Human , Genomic Structural Variation , Heuristics , Humans , INDEL Mutation
17.
Acta Neuropathol Commun ; 7(1): 219, 2019 12 23.
Article in English | MEDLINE | ID: mdl-31870437

ABSTRACT

Synucleinopathies are mostly sporadic neurodegenerative disorders of partly unexplained aetiology, and include Parkinson's disease (PD) and multiple system atrophy (MSA). We have further investigated our recent finding of somatic SNCA (α-synuclein) copy number variants (CNVs, specifically gains) in synucleinopathies, using Fluorescent in-situ Hybridisation for SNCA, and single-cell whole genome sequencing for the first time in a synucleinopathy. In the cingulate cortex, mosaicism levels for SNCA gains were higher in MSA and PD than controls in neurons (> 2% in both diseases), and for MSA also in non-neurons. In MSA substantia nigra (SN), we noted SNCA gains in > 3% of dopaminergic (DA) neurons (identified by neuromelanin) and neuromelanin-negative cells, including olig2-positive oligodendroglia. Cells with CNVs were more likely to have α-synuclein inclusions, in a pattern corresponding to cell categories mostly relevant to the disease: DA neurons in Lewy-body cases, and other cells in the striatonigral degeneration-dominant MSA variant (MSA-SND). Higher mosaicism levels in SN neuromelanin-negative cells may correlate with younger onset in typical MSA-SND, and in cingulate neurons with younger death in PD. Larger sample sizes will, however, be required to confirm these putative findings. We obtained genome-wide somatic CNV profiles from 169 cells from the substantia nigra of two MSA cases, and pons and putamen of one. These showed somatic CNVs in ~ 30% of cells, with clonality and origins in segmental duplications for some. CNVs had distinct profiles based on cell type, with neurons having a mix of gains and losses, and other cells having almost exclusively gains, although control data sets will be required to determine possible disease relevance. We propose that somatic SNCA CNVs may contribute to the aetiology and pathogenesis of synucleinopathies, and that genome-wide somatic CNVs in MSA brain merit further study.


Subject(s)
Brain/metabolism , DNA Copy Number Variations , Multiple System Atrophy/genetics , Parkinson Disease/genetics , alpha-Synuclein/genetics , Gyrus Cinguli/metabolism , Humans , Male , Neurons/metabolism , Single-Cell Analysis
18.
Front Neurol ; 10: 555, 2019.
Article in English | MEDLINE | ID: mdl-31191442

ABSTRACT

Mutations in the PARK2 gene have been implicated in the pathogenesis of early-onset Parkinson's disease. We present a case of movement disorder in a 4-year-old child from consanguineous parents and with a family history of Dopamine responsive dystonia, who was diagnosed with early-onset Parkinson's disease based on initial identification of a pathogenic PARK2 mutation. However, the evolution of the child's clinical picture was unusually rapid, with a preponderance of pyramidal rather than extrapyramidal symptoms, leading to re-investigation of the case with further imaging and genetic sequencing. Interestingly, a second homozygous mutation in the FA2H gene, implicated in Hereditary spastic paraplegia, was revealed, appearing to have contributed to the novel phenotype observed, and highlighting a potential interaction between the two mutated genes.

19.
Mov Disord ; 34(9): 1365-1373, 2019 09.
Article in English | MEDLINE | ID: mdl-31251436

ABSTRACT

BACKGROUND: Five to 25% of patients with PD carry glucocerebrosidase gene mutations, and 10% to 30% of glucocerebrosidase carriers will develop PD by age 80. Stratification of PD risk in glucocerebrosidase carriers provides an opportunity to target disease-modifying therapies. OBJECTIVE: Cross-sectional and longitudinal survey of prodromal PD signs among glucocerebrosidase carriers. DESIGN: Prospective assessment of 82 glucocerebrosidase mutation carriers and 35 controls over 4 to 5 years for prodromal clinical PD features. RESULTS: At all time points, olfactory (measured using University of Pennsylvania Smell Identification Test) and cognitive (Montreal Cognitive Assessment) function and the International Parkinson and Movement Disorder Society UPDRS parts II and III scores were significantly worse amongst glucocerebrosidase mutation carriers. Progression to microsmia (odds ratio: 8.5; 95% confidence interval: 2.6-28.2; P < 0.05) and mild cognitive impairment (odds ratio: 4.2; 95% confidence interval: 1.1-16.6; P < 0.05) were more rapid compared to controls. Those with worse olfaction also had worse cognition (OR, 1.5; 95% CI: 0.0-2.8; P < 0.05) and depression (OR, 1.3; 95% CI: 0.6-2.8; P < 0.05). No participants reached the MDS prodromal PD diagnostic criteria before PD diagnosis. One participant developed PD. He did not fulfill the International Parkinson and Movement Disorder Society prodromal PD criteria before diagnosis. CONCLUSION: Assessment of individual and clustered PD prodromal features may serve as a useful tool to identify high-risk subjects for conversion to PD. As a result of the low conversion rate in our glucocerebrosidase mutation carriers to date, prospective validation is needed in larger cohorts to establish the profile of these features in PD convertors. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Glucosylceramidase/genetics , Parkinsonian Disorders/genetics , Prodromal Symptoms , Adult , Aged , Cluster Analysis , Cross-Sectional Studies , Disease Progression , Female , Genotype , Heterozygote , Humans , Male , Middle Aged , Mutation , Prospective Studies , Risk Assessment
20.
Acta Neuropathol ; 138(5): 681-704, 2019 11.
Article in English | MEDLINE | ID: mdl-31006067

ABSTRACT

Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy are neurodegenerative disorders resulting in progressive motor/cognitive deficits among other symptoms. They are characterised by stereotypical brain cell loss accompanied by the formation of proteinaceous aggregations of the protein α-synuclein (α-syn), being, therefore, termed α-synucleinopathies. Although the presence of α-syn inclusions is a common hallmark of these disorders, the exact nature of the deposited protein is specific to each disease. Different neuroanatomical regions and cellular populations manifest a differential vulnerability to the appearance of protein deposits, cell dysfunction, and cell death, leading to phenotypic diversity. The present review describes the multiple factors that contribute to the selective vulnerability in α-synucleinopathies. We explore the intrinsic cellular properties in the affected regions, including the physiological and pathophysiological roles of endogenous α-syn, the metabolic and genetic build-up of the cells and their connectivity. These factors converge with the variability of the α-syn conformational strains and their spreading capacity to dictate the phenotypic diversity and regional vulnerability of each disease. Finally, we describe the exogenous and environmental factors that potentially contribute by igniting and modulating the differential pathology in α-synucleinopathies. In conclusion, we think that it is the confluence of this disruption of the cellular metabolic state and α-syn structural equilibrium through the anatomical connectivity which appears to initiate cascades of pathological processes triggered by genetic, environmental, or stochastic events that result in the "death by a thousand cuts" profile of α-synucleinopathies.


Subject(s)
Brain/pathology , Multiple System Atrophy/pathology , Parkinson Disease/pathology , Synucleinopathies/pathology , Animals , Humans , Lewy Bodies/pathology , Lewy Body Disease/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...