Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Papillomavirus Res ; 8: 100169, 2019 12.
Article in English | MEDLINE | ID: mdl-31283993

ABSTRACT

The linear reverse blotting assays are valid methods for accurate human papillomavirus (HPV) typing required to manage women at risk of developing cervical cancer. However, some samples showed a positive signal in HPV lines but failed to display a positive signal in subsequent typing lines (designated as HPV-X), which indicate that certain types were not available on the respective typing blots. The aim of this study is to elucidate the types or variants of HPV through the high-throughput sequencing (HTS) of 54 ASCUS cervical samples in which the viruses remained untypeable with INNO LiPA HPV® assays. Low-risk (LR)-HPV types (HPV6, 30, 42, 62, 67, 72, 74, 81, 83, 84, 87, 89, 90 and 114), high-risk (HR)-HPV35 and possibly (p)HR-HPV73 were detected among HPV-X. Individual multiple infections (two to seven types) were detected in 40.7% of samples. Twenty-two specimens contained variants characterised by 2-10 changes. HPV30 reached the maximal number of 17 variants with relative abundance inferior or equal to 2.7%. The presence of L1 quasispecies explains why linear reverse blotting assays fail when variants compete or do not match the specific probes. Further studies are needed to measure the LR-HPV quasispecies dynamics and its role during persistent infection.


Subject(s)
Cervix Uteri/virology , Genetic Variation , High-Throughput Nucleotide Sequencing , Papillomaviridae/genetics , Papillomavirus Infections/virology , Quasispecies/genetics , Base Sequence , DNA, Viral , Female , Genotype , Humans , Molecular Typing , Papillomaviridae/classification , Papillomavirus Infections/complications , Phylogeny , Sequence Analysis, DNA , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/etiology
SELECTION OF CITATIONS
SEARCH DETAIL