Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Space Sci Rev ; 219(2): 18, 2023.
Article in English | MEDLINE | ID: mdl-36874191

ABSTRACT

A detailed overview of the knowledge gaps in our understanding of the heliospheric interaction with the largely unexplored Very Local Interstellar Medium (VLISM) are provided along with predictions of with the scientific discoveries that await. The new measurements required to make progress in this expanding frontier of space physics are discussed and include in-situ plasma and pick-up ion measurements throughout the heliosheath, direct sampling of the VLISM properties such as elemental and isotopic composition, densities, flows, and temperatures of neutral gas, dust and plasma, and remote energetic neutral atom (ENA) and Lyman-alpha (LYA) imaging from vantage points that can uniquely discern the heliospheric shape and bring new information on the interaction with interstellar hydrogen. The implementation of a pragmatic Interstellar Probe mission with a nominal design life to reach 375 Astronomical Units (au) with likely operation out to 550 au are reported as a result of a 4-year NASA funded mission study.

2.
Space Sci Rev ; 218(4): 27, 2022.
Article in English | MEDLINE | ID: mdl-35574274

ABSTRACT

Large-scale disturbances generated by the Sun's dynamics first propagate through the heliosphere, influence the heliosphere's outer boundaries, and then traverse and modify the very local interstellar medium (VLISM). The existence of shocks in the VLISM was initially suggested by Voyager observations of the 2-3 kHz radio emissions in the heliosphere. A couple of decades later, both Voyagers crossed the definitive edge of our heliosphere and became the first ever spacecraft to sample interstellar space. Since Voyager 1's entrance into the VLISM, it sampled electron plasma oscillation events that indirectly measure the medium's density, increasing as it moves further away from the heliopause. Some of the observed electron oscillation events in the VLISM were associated with the local heliospheric shock waves. The observed VLISM shocks were very different than heliospheric shocks. They were very weak and broad, and the usual dissipation via wave-particle interactions could not explain their structure. Estimates of the dissipation associated with the collisionality show that collisions can determine the VLISM shock structure. According to theory and models, the existence of a bow shock or wave in front of our heliosphere is still an open question as there are no direct observations yet. This paper reviews the outstanding observations recently made by the Voyager 1 and 2 spacecraft, and our current understanding of the properties of shocks/waves in the VLISM. We present some of the most exciting open questions related to the VLISM and shock waves that should be addressed in the future.

3.
Astrophys J ; 860(2)2018 Jun 20.
Article in English | MEDLINE | ID: mdl-32690976

ABSTRACT

Magnetic reconnection in the solar corona is thought to be unstable with the formation of multiple interacting plasmoids, and previous studies have shown that plasmoid dynamics can trigger MHD waves of different modes propagating outward from the reconnection site. However, variations in plasma parameters and magnetic field strength in the vicinity of a coronal reconnection site may lead to wave reflection and mode conversion. In this paper we investigate the reflection and refraction of fast magnetoacoustic waves near a reconnection site. Under a justified assumption of an analytically specified Alfvén speed profile, we derive and solve analytically the full wave equation governing the propagation of fast-mode waves in a non-uniform background plasma without recourse to the small wavelength approximation. We show that the waves undergo reflection near the reconnection current sheet due to the Alfvén speed gradient and that the reflection efficiency depends on the plasma-ß parameter, as well as on the wave frequency. In particular, we find that waves are reflected more efficiently near reconnection sites in a low-ß plasma, which is typical under solar coronal conditions. Also, the reflection is larger for lower-frequency waves while high-frequency waves propagate outward from the reconnection region almost without the reflection. We discuss the implications of efficient wave reflection near magnetic reconnection sites in strongly magnetized coronal plasma for particle acceleration, and also the effect this might have on first ionization potential (FIP) fractionation by the ponderomotive force of these waves in the chromosphere.

4.
Appl Opt ; 54(31): F222-31, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26560611

ABSTRACT

We review the history of ultraviolet and extreme ultraviolet spectroscopy with a specific focus on such activities at the Naval Research Laboratory and on studies of the extended solar corona and solar-wind source regions. We describe the problem of forecasting solar energetic particle events and discuss an observational technique designed to solve this problem by detecting supra-thermal seed particles as extended wings on spectral lines. Such seed particles are believed to be a necessary prerequisite for particle acceleration by heliospheric shock waves driven by a coronal mass ejection.

SELECTION OF CITATIONS
SEARCH DETAIL
...