Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 627(8004): 559-563, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38509278

ABSTRACT

Floods are one of the most common natural disasters, with a disproportionate impact in developing countries that often lack dense streamflow gauge networks1. Accurate and timely warnings are critical for mitigating flood risks2, but hydrological simulation models typically must be calibrated to long data records in each watershed. Here we show that artificial intelligence-based forecasting achieves reliability in predicting extreme riverine events in ungauged watersheds at up to a five-day lead time that is similar to or better than the reliability of nowcasts (zero-day lead time) from a current state-of-the-art global modelling system (the Copernicus Emergency Management Service Global Flood Awareness System). In addition, we achieve accuracies over five-year return period events that are similar to or better than current accuracies over one-year return period events. This means that artificial intelligence can provide flood warnings earlier and over larger and more impactful events in ungauged basins. The model developed here was incorporated into an operational early warning system that produces publicly available (free and open) forecasts in real time in over 80 countries. This work highlights a need for increasing the availability of hydrological data to continue to improve global access to reliable flood warnings.


Subject(s)
Artificial Intelligence , Computer Simulation , Floods , Forecasting , Forecasting/methods , Reproducibility of Results , Rivers , Hydrology , Calibration , Time Factors , Disaster Planning/methods
2.
Nat Ecol Evol ; 4(8): 1060-1068, 2020 08.
Article in English | MEDLINE | ID: mdl-32541802

ABSTRACT

Climate and land-use change drive a suite of stressors that shape ecosystems and interact to yield complex ecological responses (that is, additive, antagonistic and synergistic effects). We know little about the spatial scales relevant for the outcomes of such interactions and little about effect sizes. These knowledge gaps need to be filled to underpin future land management decisions or climate mitigation interventions for protecting and restoring freshwater ecosystems. This study combines data across scales from 33 mesocosm experiments with those from 14 river basins and 22 cross-basin studies in Europe, producing 174 combinations of paired-stressor effects on a biological response variable. Generalized linear models showed that only one of the two stressors had a significant effect in 39% of the analysed cases, 28% of the paired-stressor combinations resulted in additive effects and 33% resulted in interactive (antagonistic, synergistic, opposing or reversal) effects. For lakes, the frequencies of additive and interactive effects were similar for all spatial scales addressed, while for rivers these frequencies increased with scale. Nutrient enrichment was the overriding stressor for lakes, with effects generally exceeding those of secondary stressors. For rivers, the effects of nutrient enrichment were dependent on the specific stressor combination and biological response variable. These results vindicate the traditional focus of lake restoration and management on nutrient stress, while highlighting that river management requires more bespoke management solutions.


Subject(s)
Ecosystem , Fresh Water , Biota , Europe , Rivers
3.
J Hydrol X ; 6: 100049, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32025657

ABSTRACT

Global and continental scale hydrological reanalysis datasets receive growing attention due to their increasing number of applications, ranging from water resources management, climate change studies, water related hazards and policy support. Until recently, their use was mostly limited to qualitative assessments, due to their coarse spatial and temporal resolution, large uncertainty and bias in the model output, and limited extent of the dataset in space and time. This research reports on the setup of a gridded hydrological model with quasi-global coverage, able to reproduce a seamless 39-year streamflow simulation in all world's medium to large river basins. The model was calibrated at 1226 river sections with a total drainage area of 51 million km2 within 66 countries, using ECMWF's latest atmospheric reanalysis ERA5. A performance assessment revealed large improvements in reproducing past discharge observations, in comparison to the calibration used in the current operational setup of the hydrological model as part of the Copernicus - Global Flood Awareness System (GloFAS, www.globalfloods.eu), with median scores of Kling-Gupta Efficiency KGE = 0.67 and correlation r = 0.8. The simulation bias was also dramatically reduced and narrowed around zero, with more than 60% of stations showing percent bias within ±20%. Pronounced regional differences in the simulation results remain, pointing out the need for detailed investigation of the hydrological processes in specific regions, including parts of Africa and South Asia. In addition, observed discharges with high data quality is key to achieving skillful model output. The new calibrated model will become part of the operational runs of GloFAS in the next system release foreseen for Spring 2020, together with a near real time extension of the streamflow reanalysis.

4.
J Hydrol X ; 4: 100034, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31853519

ABSTRACT

Early warning systems (EWS) for river flooding are strategic tools for effective disaster risk management in many world regions. When driven by ensemble Numerical Weather Predictions (NWP), flood EWS can provide skillful streamflow forecasts beyond the monthly time scale in large river basins. Yet, effective flood detection is challenged by accurate estimation of warning thresholds that identify specific hazard levels along the entire river network and forecast horizon. This research describes a novel approach to estimate warning thresholds which retain statistical consistency with the operational forecasts at all lead times. The procedure is developed in the context of the Global Flood Awareness System (GloFAS). A 21-year forecast-consistent dataset is used to derive thresholds with global coverage and forecast range up to six weeks. These are compared with thresholds derived from ERA5, a state of the art atmospheric reanalysis used to run the baseline simulation for the years 1986-2017 and to give a best guess of the present hydrological states. Findings show that the use of constant thresholds for 30-day flood forecasting, as in the current operational GloFAS setup, is consistent throughout the entire forecast range in only 30% to 40% of the river network, depending on the flood return period. Findings show that range-dependent thresholds, of weekly duration, are a more suitable alternative to time-invariant thresholds, as they improve the model consistency as well as the skills in flood monitoring and early warning, particularly over longer forecasting range.

5.
Water Resour Res ; 55(2): 1079-1104, 2019 Feb.
Article in English | MEDLINE | ID: mdl-31007298

ABSTRACT

This study develops a coherent framework to detect those catchment types associated with a high risk of maladaptation to future flood risk. Using the "scenario-neutral" approach to impact assessment the sensitivity of Irish catchments to fluvial flooding is examined in the context of national climate change allowances. A predefined sensitivity domain is used to quantify flood responses to +2 °C mean annual temperature with incremental changes in the seasonality and mean of the annual precipitation cycle. The magnitude of the 20-year flood is simulated at each increment using two rainfall-runoff models (GR4J, NAM), then concatenated as response surfaces for 35 sample catchments. A typology of catchment sensitivity is developed using clustering and discriminant analysis of physical attributes. The same attributes are used to classify 215 ungauged/data-sparse catchments. To address possible redundancies, the exposure of different catchment types to projected climate is established using an objectively selected subset of the Coupled Model Intercomparison Project Phase 5 ensemble. Hydrological model uncertainty is shown to significantly influence sensitivity and have a greater effect than ensemble bias. A national flood risk allowance of 20%, considering all 215 catchments is shown to afford protection against ~48% to 98% of the uncertainty in the Coupled Model Intercomparison Project Phase 5 subset (Representative Concentration Pathway 8.5; 2070-2099), irrespective of hydrological model and catchment type. However, results indicate that assuming a standard national or regional allowance could lead to local over/under adaptation. Herein, catchments with relatively less storage are sensitive to seasonal amplification in the annual cycle of precipitation and warrant special attention.

6.
Sci Total Environ ; 572: 1507-1519, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-26927961

ABSTRACT

Potential increases of phytoplankton concentrations in river systems due to global warming and changing climate could pose a serious threat to the anthropogenic use of surface waters. Nevertheless, the extent of the effect of climatic alterations on phytoplankton concentrations in river systems has not yet been analysed in detail. In this study, we assess the impact of a change in precipitation and temperature on river phytoplankton concentration by means of a physically-based model. A scenario-neutral methodology has been employed to evaluate the effects of climate alterations on flow, phosphorus concentration and phytoplankton concentration of the River Thames (southern England). In particular, five groups of phytoplankton are considered, representing a range of size classes and pigment phenotypes, under three different land-use/land-management scenarios to assess their impact on phytoplankton population levels. The model results are evaluated within the framework of future climate projections, using the UK Climate Projections 09 (UKCP09) for the 2030s. The results of the model demonstrate that an increase in average phytoplankton concentration due to climate change is highly likely to occur, with the magnitude varying depending on the location along the River Thames. Cyanobacteria show significant increases under future climate change and land use change. An expansion of intensive agriculture accentuates the growth in phytoplankton, especially in the upper reaches of the River Thames. However, an optimal phosphorus removal mitigation strategy, which combines reduction of fertiliser application and phosphorus removal from wastewater, can help to reduce this increase in phytoplankton concentration, and in some cases, compensate for the effect of rising temperature.


Subject(s)
Agriculture , Climate Change , Phosphorus/analysis , Phytoplankton/physiology , Rivers/chemistry , Water Pollutants, Chemical/analysis , England , Models, Theoretical
7.
Proc Natl Acad Sci U S A ; 111(9): 3262-7, 2014 Mar 04.
Article in English | MEDLINE | ID: mdl-24344266

ABSTRACT

Increasing concentrations of greenhouse gases in the atmosphere are expected to modify the global water cycle with significant consequences for terrestrial hydrology. We assess the impact of climate change on hydrological droughts in a multimodel experiment including seven global impact models (GIMs) driven by bias-corrected climate from five global climate models under four representative concentration pathways (RCPs). Drought severity is defined as the fraction of land under drought conditions. Results show a likely increase in the global severity of hydrological drought at the end of the 21st century, with systematically greater increases for RCPs describing stronger radiative forcings. Under RCP8.5, droughts exceeding 40% of analyzed land area are projected by nearly half of the simulations. This increase in drought severity has a strong signal-to-noise ratio at the global scale, and Southern Europe, the Middle East, the Southeast United States, Chile, and South West Australia are identified as possible hotspots for future water security issues. The uncertainty due to GIMs is greater than that from global climate models, particularly if including a GIM that accounts for the dynamic response of plants to CO2 and climate, as this model simulates little or no increase in drought frequency. Our study demonstrates that different representations of terrestrial water-cycle processes in GIMs are responsible for a much larger uncertainty in the response of hydrological drought to climate change than previously thought. When assessing the impact of climate change on hydrology, it is therefore critical to consider a diverse range of GIMs to better capture the uncertainty.


Subject(s)
Climate Change , Droughts/statistics & numerical data , Hydrodynamics , Models, Theoretical , Computer Simulation , Forecasting , Geography , Uncertainty
8.
PLoS Curr ; 52013 Jun 05.
Article in English | MEDLINE | ID: mdl-23787891

ABSTRACT

Introduction. Climate change projections indicate that droughts will become more intense in the 21 century in some areas of the world. The El Niño Southern Oscillation is associated with drought in some countries, and forecasts can provide advance warning of the increased risk of adverse climate conditions. The most recent available data from EMDAT estimates that over 50 million people globally were affected by drought in 2011. Documentation of the health effects of drought is difficult, given the complexity in assigning a beginning/end and because effects tend to accumulate over time. Most health impacts are indirect because of its link to other mediating circumstances like loss of livelihoods. Methods. The following databases were searched: MEDLINE; CINAHL; Embase; PsychINFO, Cochrane Collection. Key references from extracted papers were hand-searched, and advice from experts was sought for further sources of literature. Inclusion criteria for papers summarised in tables include: explicit link made between drought as exposure and human health outcomes; all study designs/methods; all countries/contexts; any year of publication. Exclusion criteria include: drought meaning shortage unrelated to climate; papers not published in English; studies on dry/arid climates unless drought was noted as an abnormal climatological event. No formal quality evaluation was used on papers meeting inclusion criteria. Results. 87 papers meeting the inclusion criteria are summarised in tables. Additionally, 59 papers not strictly meeting the inclusion criteria are used as supporting text in relevant parts of the results section. Main categories of findings include: nutrition-related effects (including general malnutrition and mortality, micronutrient malnutrition, and anti-nutrient consumption); water-related disease (including E coli, cholera and algal bloom); airborne and dust-related disease (including silo gas exposure and coccidioidomycosis); vector borne disease (including malaria, dengue and West Nile Virus); mental health effects (including distress and other emotional consequences); and other health effects (including wildfire, effects of migration, and damage to infrastructure). Conclusions. The probability of drought-related health impacts varies widely and largely depends upon drought severity, baseline population vulnerability, existing health and sanitation infrastructure, and available resources with which to mitigate impacts as they occur. The socio-economic environment in which drought occurs influences the resilience of the affected population. Forecasting can be used to provide advance warning of the increased risk of adverse climate conditions and can support the disaster risk reduction process. Despite the complexities involved in documentation, research should continue and results should be shared widely in an effort to strengthen drought preparedness and response activities.

SELECTION OF CITATIONS
SEARCH DETAIL
...