Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Sci Rep ; 13(1): 16524, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37783688

ABSTRACT

Assessing wildlife health in remote regions requires a multi-faceted approach, which commonly involves convenient samplings and the need of identifying and targeting relevant and informative indicators. We applied a novel wildlife health framework and critically assessed the value of different indicators for understanding the health status and trends of an endangered tundra caribou population. Samples and data from the Dolphin and Union caribou herd were obtained between 2015 and 2021, from community-based surveillance programs and from captured animals. We documented and categorized indicators into health determinants (infectious diseases and trace elements), processes (cortisol, pathology), and health outcomes (pregnancy and body condition). During a recent period of steep population decline, our results indicated a relatively good body condition and pregnancy rates, and decreasing levels of stress, along with a low adult cow survival. We detected multiple factors as potential contributors to the reduced survival, including Brucella suis biovar 4, Erysipelothrix rhusiopathiae and lower hair trace minerals. These results remark the need of targeted studies to improve detection and investigations on caribou mortalities. We also identified differences in health indicators between captured and hunter sampled caribou, highlighting the importance of accounting for sampling biases. This integrative approach that drew on multiple data sources has provided unprecedented knowledge on the health in this herd and highlights the value of documenting individual animal health to understand causes of wildlife declines.


Subject(s)
Erysipelothrix , Reindeer , Pregnancy , Female , Cattle , Animals , Animals, Wild , Pregnancy Rate , Health Status
2.
One Health ; 17: 100618, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37811399

ABSTRACT

Wild animal trade for human consumption is a global issue, involving complex interactions between economics, culture, food security and conservation. Whilst being a biodiversity issue, it is also a major public health concern, with recent epidemics and pandemics of zoonotic pathogens linked to interactions with wildlife. At three time points, between March 2017 and June 2018, a longitudinal sero-survey of 150 market vendors from three wet markets in Laos (selling vegetables, domestic animal meat and/or wildlife meat) was conducted to determine if vendors had been differentially exposed to three endemic bacterial pathogens - Orientia tsutsugamushi, Rickettsia typhi, and Leptospira spp. A total of 367 serum samples were tested by IgG enzyme-linked immunosorbent assay (ELISA) and immunofluorescence assay (IFA, for scrub typhus group (STG) and typhus group (TG) only). Among vendors, 32.7% were IgG-positive for at least one pathogen, 13.3% sero-converted during the study. Multi-season occupancy modelling for STG indicated a significantly higher prevalence of STG IgG in vegetable vendors (27.3%) and wildlife vendors (28.4%) than in domestic animal meat vendors (6.9 %, p=0.05), and higher in Phonsavanh market (OR=9.6, p=0.03) compared to Lak Sao and Salavan markets. Estimated mean incidence was 57 cases per 10,000 per 7.5-month period. For TG, vendor age had a significant effect on prevalence (OR=1.04, p=0.006), estimated mean incidence was 64 cases per 10,000 per season (7.5-month period). Despite individuals selling domestic meat having a higher prevalence of Leptospira infections than those that did not (11.6% versus 4.5%), the difference was not significant. Whilst this study has a number of limitations, including vendors changing what food types they sold and no investigation of exposure outside of markets, the finding that the risk of exposure of vendors to zoonotic pathogens may be associated with types of food sold for human consumption warrants further investigation.

5.
Sci Total Environ ; 863: 160748, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36513230

ABSTRACT

Wildlife and wildlife interfaces with people and livestock are essential surveillance targets to monitor emergent or endemic pathogens or new threats affecting wildlife, livestock, and human health. However, limitations of previous investments in scope and duration have resulted in a neglect of wildlife health surveillance (WHS) systems at national and global scales, particularly in lower and middle income countries (LMICs). Building on decades of wildlife health activities in LMICs, we demonstrate the implementation of a locally-driven multi-pronged One Health approach to establishing WHS in Cambodia, Lao PDR and Viet Nam under the WildHealthNet initiative. WildHealthNet utilizes existing local capacity in the animal, public health, and environmental sectors for event based or targeted surveillance and disease detection. To scale up surveillance systems to the national level, WildHealthNet relies on iterative field implementation and policy development, capacity bridging, improving data collection and management systems, and implementing context specific responses to wildlife health intelligence. National WHS systems piloted in Cambodia, Lao PDR, and Viet Nam engaged protected area rangers, wildlife rescue centers, community members, and livestock and human health sector staff and laboratories. Surveillance activities detected outbreaks of H5N1 highly pathogenic avian influenza in wild birds, African swine fever in wild boar (Sus scrofa), Lumpy skin disease in banteng (Bos javanicus), and other endemic zoonotic pathogens identified as surveillance priorities by local stakeholders. In Cambodia and Lao PDR, national plans for wildlife disease surveillance are being signed into legislation. Cross-sectoral and trans-disciplinary approaches are needed to implement effective WHS systems. Long-term commitment, and paralleled implementation and policy development are key to sustainable WHS networks. WildHealthNet offers a roadmap to aid in the development of locally-relevant and locally-led WHS systems that support the global objectives of the World Organization for Animal Health's Wildlife Health Framework and other international agendas.


Subject(s)
African Swine Fever , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Humans , Animals , Cattle , Swine , Animals, Wild , Asia, Southeastern/epidemiology
6.
J Wildl Dis ; 58(3): 473-486, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35675481

ABSTRACT

The role and impact of infectious diseases in wildlife population dynamics are increasingly recognized, yet disease information is variably incorporated into wildlife management frameworks. This discrepancy is particularly relevant for Rangifer tarandus (caribou or reindeer), a keystone circumarctic species experiencing widespread population declines. The primary objective of this review was to characterize the available peer-reviewed literature on infectious diseases of Rangifer by using a scoping review methodology. Three databases of peer-reviewed literature-Web of Science, BIOSIS previews, and Scopus-were searched and 695 articles met the criteria for initial review. After screening for relevance and language, 349 articles, published between 1967 and 2020, remained. More than half of the excluded articles (181/346; 52%) were left out because they were not published in English; the majority of these excluded articles (120) were in Russian. From the 349 included articles, 137 (39%) pertained to wild (as opposed to semidomesticated or captive) Rangifer populations. Articles on infectious disease in wild Rangifer were published in 40 different journals across various disciplines; the most common journals were disease and parasitology oriented, accounting for 55% of included articles. Most studies were descriptive (87%), followed by experimental (9%). Of the pathogen taxa investigated, helminths were the most common, comprising 35% of articles. Rangifer subspecies were not equally represented in the literature, with barren-ground caribou (R. t. groenlandicus; n=40) and woodland caribou (R. t. caribou; n=39) having the greatest abundance and diversity of infectious disease information available. Few studies explicitly examined individual or population-level impacts of disease, or related disease to vital population rates, and only 27 articles explicitly related results to management or conservation. Findings from this review highlight an unbalanced distribution of studies across Rangifer ecotypes, a preference for dissemination in disease-specialized publication venues, and an opportunity for investigating population-level impacts that may be more readily integrated into caribou conservation frameworks.


Subject(s)
Communicable Diseases , Deer , Reindeer , Animals , Communicable Diseases/veterinary , Population Dynamics , Russia
7.
Emerg Infect Dis ; 28(4): 860-864, 2022 04.
Article in English | MEDLINE | ID: mdl-35318932

ABSTRACT

We tested animals from wildlife trade sites in Laos for the presence of zoonotic pathogens. Leptospira spp. were the most frequently detected infectious agents, found in 20.1% of animals. Rickettsia typhi and R. felis were also detected. These findings suggest a substantial risk for exposure through handling and consumption of wild animal meat.


Subject(s)
Leptospira , Zoonoses , Animals , Animals, Wild , Humans , Laos/epidemiology , Rickettsia typhi , Zoonoses/epidemiology
8.
Front Public Health ; 9: 627654, 2021.
Article in English | MEDLINE | ID: mdl-34026707

ABSTRACT

The COVID-19 pandemic has re-focused attention on mechanisms that lead to zoonotic disease spillover and spread. Commercial wildlife trade, and associated markets, are recognized mechanisms for zoonotic disease emergence, resulting in a growing global conversation around reducing human disease risks from spillover associated with hunting, trade, and consumption of wild animals. These discussions are especially relevant to people who rely on harvesting wildlife to meet nutritional, and cultural needs, including those in Arctic and boreal regions. Global policies around wildlife use and trade can impact food sovereignty and security, especially of Indigenous Peoples. We reviewed known zoonotic pathogens and current risks of transmission from wildlife (including fish) to humans in North American Arctic and boreal biomes, and evaluated the epidemic and pandemic potential of these zoonoses. We discuss future concerns, and consider monitoring and mitigation measures in these changing socio-ecological systems. While multiple zoonotic pathogens circulate in these systems, risks to humans are mostly limited to individual illness or local community outbreaks. These regions are relatively remote, subject to very cold temperatures, have relatively low wildlife, domestic animal, and pathogen diversity, and in many cases low density, including of humans. Hence, favorable conditions for emergence of novel diseases or major amplification of a spillover event are currently not present. The greatest risk to northern communities from pathogens of pandemic potential is via introduction with humans visiting from other areas. However, Arctic and boreal ecosystems are undergoing rapid changes through climate warming, habitat encroachment, and development; all of which can change host and pathogen relationships, thereby affecting the probability of the emergence of new (and re-emergence of old) zoonoses. Indigenous leadership and engagement in disease monitoring, prevention and response, is vital from the outset, and would increase the success of such efforts, as well as ensure the protection of Indigenous rights as outlined in the United Nations Declaration on the Rights of Indigenous Peoples. Partnering with northern communities and including Indigenous Knowledge Systems would improve the timeliness, and likelihood, of detecting emerging zoonotic risks, and contextualize risk assessments to the unique human-wildlife relationships present in northern biomes.


Subject(s)
Animals, Wild , COVID-19 , Animals , Arctic Regions , Ecosystem , Humans , Pandemics/prevention & control , SARS-CoV-2 , United States , Zoonoses/epidemiology
9.
Transbound Emerg Dis ; 68(5): 2669-2675, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33351995

ABSTRACT

African Swine Fever (ASF) is a highly contagious and fatal viral disease affecting both domestic and wild suids. The virus was introduced to Southeast Asia in early 2019 and has since spread rapidly throughout the region. Although significant efforts have been made to track and diagnose the disease in domestic pigs, very little is known about ASF in free-ranging wild boar and their potential role in maintaining the disease within Southeast Asia. Through a collaboration between government and non-government actors in Laos, Viet Nam, and Cambodia, investigations were conducted to (a) characterize the interface between domestic pigs and wild boar, (b) document risk factors for likely ASF spillover into wild boar populations by way of this interface, and (c) determine whether ASF in wild boar could be detected in each country. An extensive overlap between wild boar habitat and domestic pig ranging areas was found around villages bordering forests in all three countries, creating a high-risk interface for viral spillover between domestic pig and wild boar populations. Fifteen and three wild boar carcasses were detected through passive reporting in Laos and Viet Nam, respectively, in 2019 and early 2020. Four of five carcasses screened in Laos and two of three in Viet Nam were confirmed positive for African swine fever virus using real-time PCR. There were no confirmed reports of wild boar carcasses in Cambodia. This is the first confirmation of ASF in wild boar in Southeast Asia, the result of a probable viral spillover from domestic pigs, which highlights the importance of early reporting and monitoring of ASF in wild boar to enable the implementation of appropriate biosecurity measures.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine/virology , African Swine Fever/diagnosis , African Swine Fever/epidemiology , African Swine Fever Virus/genetics , African Swine Fever Virus/isolation & purification , Animals , Cambodia , Laos , Risk Factors , Sus scrofa/virology , Vietnam
10.
PLoS One ; 15(12): e0243180, 2020.
Article in English | MEDLINE | ID: mdl-33259561

ABSTRACT

This study investigates the occurrence of erythematous lip lesions in a captive sun bear population in Cambodia, including the progression of cheilitis to squamous cell carcinoma, and the presence of Ursid gammaherpesvirus 1. Visual assessment conducted in 2015 and 2016 recorded the prevalence and severity of lesions. Opportunistic sampling for disease testing was conducted on a subset of 39 sun bears, with histopathological examination of lip and tongue biopsies and PCR testing of oral swabs and tissue biopsies collected during health examinations. Lip lesions were similarly prevalent in 2015 (66.0%) and 2016 (68.3%). Degradation of lip lesion severity was seen between 2015 and 2016, and the odds of having lip lesions, having more severe lip lesions, and having lip lesion degradation over time, all increased with age. Cheilitis was found in all lip lesion biopsies, with histological confirmation of squamous cell carcinoma in 64.5% of cases. Single biopsies frequently showed progression from dysplasia to neoplasia. Eighteen of 31 sun bears (58.1%) had at least one sample positive for Ursid gammaherpesvirus 1. The virus was detected in sun bears with and without lip lesions, however due to case selection being strongly biased towards those showing lip lesions it was not possible to test for association between Ursid gammaherpesvirus 1 and lip squamous cell carcinoma. Given gammaherpesviruses can play a role in cancer development under certain conditions in other species, we believe further investigation into Ursid gammaherpesvirus 1 as one of a number of possible co-factors in the progression of lip lesions to squamous cell carcinoma is warranted. This study highlights the progressively neoplastic nature of this lip lesion syndrome in sun bears which has consequences for captive and re-release management. Similarly, the detection of Ursid gammaherpesvirus 1 should be considered in pre-release risk analyses, at least until data is available on the prevalence of the virus in wild sun bears.


Subject(s)
Lip Diseases/veterinary , Lip/pathology , Ursidae , Animals , Cambodia/epidemiology , Carcinoma, Squamous Cell/epidemiology , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/veterinary , Disease Progression , Erythema/epidemiology , Erythema/pathology , Erythema/veterinary , Female , Gammaherpesvirinae/classification , Gammaherpesvirinae/genetics , Gammaherpesvirinae/isolation & purification , Lip Diseases/epidemiology , Lip Diseases/pathology , Lip Neoplasms/epidemiology , Lip Neoplasms/pathology , Lip Neoplasms/veterinary , Male , Phylogeny , Prevalence , Risk Factors , Ursidae/virology
11.
PLoS One ; 15(8): e0237129, 2020.
Article in English | MEDLINE | ID: mdl-32776964

ABSTRACT

Outbreaks of emerging coronaviruses in the past two decades and the current pandemic of a novel coronavirus (SARS-CoV-2) that emerged in China highlight the importance of this viral family as a zoonotic public health threat. To gain a better understanding of coronavirus presence and diversity in wildlife at wildlife-human interfaces in three southern provinces in Viet Nam 2013-2014, we used consensus Polymerase Chain Reactions to detect coronavirus sequences. In comparison to previous studies, we observed high proportions of positive samples among field rats (34.0%, 239/702) destined for human consumption and insectivorous bats in guano farms (74.8%, 234/313) adjacent to human dwellings. Most notably among field rats, the odds of coronavirus RNA detection significantly increased along the supply chain from field rats sold by traders (reference group; 20.7% positivity, 39/188) by a factor of 2.2 for field rats sold in large markets (32.0%, 116/363) and 10.0 for field rats sold and served in restaurants (55.6%, 84/151). Coronaviruses were also detected in rodents on the majority of wildlife farms sampled (60.7%, 17/28). These coronaviruses were found in the Malayan porcupines (6.0%, 20/331) and bamboo rats (6.3%, 6/96) that are raised on wildlife farms for human consumption as food. We identified six known coronaviruses in bats and rodents, clustered in three Coronaviridae genera, including the Alpha-, Beta-, and Gammacoronaviruses. Our analysis also suggested either mixing of animal excreta in the environment or interspecies transmission of coronaviruses, as both bat and avian coronaviruses were detected in rodent feces on wildlife farms. The mixing of multiple coronaviruses, and their apparent amplification along the wildlife supply chain into restaurants, suggests maximal risk for end consumers and likely underpins the mechanisms of zoonotic spillover to people.


Subject(s)
Animals, Wild/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Coronavirus/genetics , Meat/virology , Zoonoses/epidemiology , Zoonoses/transmission , Animals , Chiroptera/virology , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Disease Reservoirs/virology , Feces/virology , Food Supply , Humans , Phylogeny , Polymerase Chain Reaction , Porcupines/virology , RNA, Viral/genetics , Rats , Risk , Vietnam/epidemiology , Zoonoses/diagnosis , Zoonoses/virology
12.
Zoonoses Public Health ; 67(7): 796-804, 2020 11.
Article in English | MEDLINE | ID: mdl-32812389

ABSTRACT

Wet markets are a critical part of South-East Asian culture and economy. However, their role in circulation and transmission of both endemic and emerging disease is a source of concern in a region considered a hotspot of disease emergence. In the Lao People's Democratic Republic (Lao PDR, Laos), live and dead wild animals are frequently found in wet markets, despite legislation against the bushmeat trade. This is generally considered to increase the risk of disease transmission and emergence, although whether or not wildlife vendors themselves have indeed increased incidence of zoonotic disease has rarely been assessed. In preparation for a future longitudinal study of market vendors investigating vendors' exposure to zoonotic pathogens, we conducted a pilot survey of Lao market vendors of wildlife meat, livestock meat and vegetables, to identify demographic characteristics and potential control groups within markets. We also investigated baseline risk perception for infectious diseases among market vendors and assessed the association between risk perception and risk mitigation behaviours. The surveys conducted with 177 vendors revealed similar age, sex, ethnic background and geographical origin between vendor types, but differences in professional background and work history for livestock meat vendors. The perception of disease risk was very low across all vendors, as was the reported use of personal protective equipment, and the two appeared unrelated. Personal risk discounting and assumptions about transmission routes may explain this lack of association. This information will help inform the development of future research, risk communication and risk mitigation policy, especially in the light of the COVID-19 pandemic.


Subject(s)
Animals, Wild/virology , Commerce/statistics & numerical data , Health Knowledge, Attitudes, Practice , Pandemics/prevention & control , Zoonoses/transmission , Adolescent , Adult , Aged , Animals , Cross-Sectional Studies , Female , Humans , Laos/epidemiology , Livestock/virology , Longitudinal Studies , Male , Meat/virology , Middle Aged , Pilot Projects , Risk Factors , Young Adult , Zoonoses/epidemiology , Zoonoses/virology
13.
Front Vet Sci ; 7: 50, 2020.
Article in English | MEDLINE | ID: mdl-32232059

ABSTRACT

Growing evidence suggests that multiple wildlife species can be infected with peste des petits ruminants virus (PPRV), with important consequences for the potential maintenance of PPRV in communities of susceptible hosts, and the threat that PPRV may pose to the conservation of wildlife populations and resilience of ecosystems. Significant knowledge gaps in the epidemiology of PPRV across the ruminant community (wildlife and domestic), and the understanding of infection in wildlife and other atypical host species groups (e.g., camelidae, suidae, and bovinae) hinder our ability to apply necessary integrated disease control and management interventions at the wildlife-livestock interface. Similarly, knowledge gaps limit the inclusion of wildlife in the FAO/OIE Global Strategy for the Control and Eradication of PPR, and the framework of activities in the PPR Global Eradication Programme that lays the foundation for eradicating PPR through national and regional efforts. This article reports on the first international meeting on, "Controlling PPR at the livestock-wildlife interface," held in Rome, Italy, March 27-29, 2019. A large group representing national and international institutions discussed recent advances in our understanding of PPRV in wildlife, identified knowledge gaps and research priorities, and formulated recommendations. The need for a better understanding of PPRV epidemiology at the wildlife-livestock interface to support the integration of wildlife into PPR eradication efforts was highlighted by meeting participants along with the reminder that PPR eradication and wildlife conservation need not be viewed as competing priorities, but instead constitute two requisites of healthy socio-ecological systems.

14.
Emerg Infect Dis ; 26(1): 51-62, 2020 01.
Article in English | MEDLINE | ID: mdl-31855146

ABSTRACT

The 2016-2017 introduction of peste des petits ruminants virus (PPRV) into livestock in Mongolia was followed by mass mortality of the critically endangered Mongolian saiga antelope and other rare wild ungulates. To assess the nature and population effects of this outbreak among wild ungulates, we collected clinical, histopathologic, epidemiologic, and ecological evidence. Molecular characterization confirmed that the causative agent was PPRV lineage IV. The spatiotemporal patterns of cases among wildlife were similar to those among livestock affected by the PPRV outbreak, suggesting spillover of virus from livestock at multiple locations and time points and subsequent spread among wild ungulates. Estimates of saiga abundance suggested a population decline of 80%, raising substantial concerns for the species' survival. Consideration of the entire ungulate community (wild and domestic) is essential for elucidating the epidemiology of PPRV in Mongolia, addressing the threats to wild ungulate conservation, and achieving global PPRV eradication.


Subject(s)
Animals, Wild/virology , Antelopes/virology , Disease Outbreaks/veterinary , Endangered Species , Peste-des-Petits-Ruminants/epidemiology , Peste-des-petits-ruminants virus , Animals , Endangered Species/statistics & numerical data , Female , Genome, Viral/genetics , Male , Mongolia/epidemiology , Peste-des-Petits-Ruminants/pathology , Peste-des-petits-ruminants virus/genetics , Phylogeny
15.
Prev Vet Med ; 174: 104846, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31765959

ABSTRACT

Overlap of cattle and wild elk ranges in southwestern Alberta foothills is an opportunity for inter-species interactions. To assess the spatio-temporal patterns of disease transmission risk between cattle and elk, several risk indexes were defined to represent different transmission routes. Risk indexes were estimated by combining elk telemetry data obtained from 168 GPS-collared elk, and cattle management information obtained by interviews conducted in 16 cow-calf operations overlapping the elk home range. We assessed the bias resulting from ignoring cattle movement related to seasonnal grazing practices, and the impact of the assessment of spatio-temporal patterns of risk. Direct transmission risk indexes peaked during winter months, due to aggregation at higher densities of both elk and cattle on winter ranges and winter pastures, respectively. However, a summer peak also was observed when risk indexes were not adjusted for pasture area, due to larger cattle summer pastures overlapping a higher number of elk telemetry locations. We identified periods when the proximity of elk to specific features (such as mineral blocks, hay land, winter-feeding areas, or water sources) may increase the risk of inter-species transmission. Indirect transmission risk indexes increased with the survival of pathogens in the environment, as the temporal constraint for cattle and elk overlap decreased. Finally, integrating pasture management information substantially influenced the magnitude and temporal patterns of transmission risk indexes, highlighting the importance of collecting detailed livestock management data in the context of assessing the risk of inter-species disease transmission.


Subject(s)
Animal Husbandry , Cattle Diseases/transmission , Deer , Telemetry/veterinary , Alberta , Animals , Cattle , Female , Male , Risk
16.
Sci Total Environ ; 676: 732-745, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31054417

ABSTRACT

Trade of bushmeat and other wildlife for human consumption presents a unique set of challenges to policy-makers who are confronted with multiple trade-offs between conservation, food security, food safety, culture and tradition. In the face of these complex issues, risk assessments supported by quantitative information would facilitate evidence-based decision making. We propose a conceptual model for disease transmission risk analysis, inclusive of these multiple other facets. To quantify several processes included in this conceptual model we conducted questionnaire surveys with wildlife consumers and vendors in semi-urban centers in Lao People's Democratic Republic (Lao PDR, Laos) and direct observations of consumer behaviors. Direct observation of market stalls indicated an estimated average of 10 kg bushmeat biomass per stall per hour. The socio-demographic data suggested that consumption of bushmeat in urban areas was not for subsistence but rather driven by dietary preference and tradition. Consumer behavioral observations indicated that each animal receives an average of 7 contacts per hour. We provide other key parameters to estimate the risk of disease transmission from bushmeat consumption and illustrate their use in assessing the total public health and socio-economic impact of bushmeat consumption. Pursuing integrative approaches to the study of bushmeat consumption is essential to develop effective and balanced policies that support conservation, public health, and rural development goals.


Subject(s)
Conservation of Natural Resources , Meat/statistics & numerical data , Public Health , Animals , Commerce , Laos , Socioeconomic Factors
17.
Eur J Wildl Res ; 65(3): 41, 2019.
Article in English | MEDLINE | ID: mdl-32214949

ABSTRACT

A mass mortality event involving Chaerephon plicatus and Taphozous theobaldi bats occurred during a heat wave in April 2016 in Cambodia. This was investigated to clarify the causes of the die-off and assess the risk to public health. Field evidences, clinical signs, and gross pathology findings were consistent with a heat stress hypothesis. However, the detection of a novel bat paramyxovirus raises questions about its role as a contributing factor or a coincidental finding. Systematic documentation of bat die-offs related to extreme weather events is necessary to improve understanding of the effect of changing weather patterns on bat populations and the ecosystem services they provide.

19.
J Zoo Wildl Med ; 48(4): 1242-1246, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29297823

ABSTRACT

Southern River terrapins ( Batagur affinis) are among the most critically endangered turtles in the world. To augment the Cambodia population, a head-start program was established for the endemic subspecies Batagur affinis edwardmolli in 2006, and in 2015, prerelease health assessments were performed on 70 subadults (hatch years, 2006-2011). Combined choanal/cloacal swab samples ( n = 70) were collected and screened by polymerase chain reaction (PCR) for Mycoplasma, herpesvirus, and ranavirus. Cloacal samples ( n = 50) were also collected and cultured for Salmonella sp. Of 70 tested samples, six (8.6%) were positive for Mycoplasma, and all other PCR and culture test results were negative. Phylogenetic analysis of the 16S ribosomal RNA gene placed the Mycoplasma sp. from B. affinis edwardmolli in the chelonian Mycoplasma cluster that groups within the Mycoplasma pulmonis clade. This mollicute was not associated with clinical disease (defined as observable clinical abnormalities, such as depression, lethargy, respiratory signs, and anorexia) and is likely part of the endemic microbial flora of these terrapins.


Subject(s)
Mycoplasma Infections/veterinary , Turtles , Virus Diseases/veterinary , Animals , Cambodia/epidemiology , Endangered Species , Mycoplasma/genetics , Mycoplasma Infections/epidemiology , Mycoplasma Infections/microbiology , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Virus Diseases/epidemiology , Virus Diseases/virology
20.
PLoS One ; 11(7): e0159319, 2016.
Article in English | MEDLINE | ID: mdl-27462721

ABSTRACT

Migratory movements and alteration of host communities through livestock production are examples of ecological processes that may have consequences on wildlife pathogens. We studied the effect of co-grazing of cattle and wild elk, and of elk migratory behaviour on the occurrence of the giant liver fluke, Fascioloides magna, in elk. Migratory elk and elk herds with a higher proportion of migratory individuals were significantly less likely to be infected with F. magna. This may indicate a decreased risk of infection for migratory individuals, known as the "migratory escape" hypothesis. Elk herds overlapping with higher cattle densities also had a lower prevalence of this parasite, even after adjustment for landscape and climate variables known to influence its life cycle. Serological evidence suggests that even in low-prevalence areas, F. magna is circulating in both elk and cattle. Cattle are "dead-end" hosts for F. magna, and this may, therefore, indicate a dilution effect where cattle and elk are co-grazing. Migratory behaviour and host community composition have significant effects on the dynamics of this wildlife parasite; emphasizing the potential impacts of decisions regarding the management of migratory corridors and livestock-wildlife interface.


Subject(s)
Animal Migration , Deer/physiology , Fasciolidae/isolation & purification , Trematode Infections/veterinary , Animals , Cattle , Cattle Diseases/parasitology , Ecosystem , Feces/parasitology , Species Specificity , Trematode Infections/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...