Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 17748, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34493768

ABSTRACT

Based on WHO reports the new SARS-CoV-2 coronavirus is currently widespread all over the world. So far > 162 million cases have been confirmed, including > 3 million deaths. Because of the pandemic still spreading across the globe the accomplishment of computational methods to find new potential mechanisms of virus inhibitions is necessary. According to the fact that C60 fullerene (a sphere-shaped molecule consisting of carbon) has shown inhibitory activity against various protein targets, here the analysis of the potential binding mechanism between SARS-CoV-2 proteins 3CLpro and RdRp with C60 fullerene was done; it has resulted in one and two possible binding mechanisms, respectively. In the case of 3CLpro, C60 fullerene interacts in the catalytic binding pocket. And for RdRp in the first model C60 fullerene blocks RNA synthesis pore and in the second one it prevents binding with Nsp8 co-factor (without this complex formation, RdRp can't perform its initial functions). Then the molecular dynamics simulation confirmed the stability of created complexes. The obtained results might be a basis for other computational studies of 3CLPro and RdRp potential inhibition ways as well as the potential usage of C60 fullerene in the fight against COVID-19 disease.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Fullerenes/pharmacology , Antiviral Agents/therapeutic use , COVID-19/epidemiology , COVID-19/virology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/ultrastructure , Coronavirus Protease Inhibitors/chemistry , Coronavirus Protease Inhibitors/pharmacology , Coronavirus Protease Inhibitors/therapeutic use , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , Coronavirus RNA-Dependent RNA Polymerase/ultrastructure , Crystallography, X-Ray , Fullerenes/chemistry , Fullerenes/therapeutic use , Humans , Molecular Dynamics Simulation , Nucleic Acid Synthesis Inhibitors/chemistry , Nucleic Acid Synthesis Inhibitors/pharmacology , Nucleic Acid Synthesis Inhibitors/therapeutic use , Pandemics/prevention & control , RNA, Viral/biosynthesis , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , SARS-CoV-2/ultrastructure
2.
Cancer Nanotechnol ; 9(1): 8, 2018.
Article in English | MEDLINE | ID: mdl-30416604

ABSTRACT

BACKGROUND: C60 fullerene-based nanoformulations are proposed to have a direct toxic effect on tumor cells. Previous investigations demonstrated that C60 fullerene used alone or being conjugated with chemotherapeutic agents possesses a potent anticancer activity. The main aim of this study was to investigate the effect of C60 fullerene and its nanocomplexes with anticancer drugs on human phagocyte metabolic profile in vitro. METHODS: Analysis of the metabolic profile of phagocytes exposed to C60 fullerene in vitro revealed augmented phagocytic activity and down-regulated reactive nitrogen species generation in these cells. Additionally, cytofluorimetric analysis showed that C60 fullerene can exert direct cytotoxic effect on normal and transformed phagocytes through the vigorous induction of intracellular reactive oxygen species generation. RESULTS: Cytotoxic action as well as the pro-oxidant effect of C60 fullerene was more pronounced toward malignant phagocytes. At the same time, C60 fullerenes have the ability to down-regulate the pro-oxidant effect of cisplatin on normal cells. These results indicate that C60 fullerenes may influence phagocyte metabolism and have both pro-oxidant and antioxidant properties. CONCLUSIONS: The antineoplastic effect of C60 fullerene has been observed by direct toxic effect on tumor cells, as well as through the modulation of the functions of effector cells of antitumor immunity.

3.
Toxicol In Vitro ; 52: 122-130, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29906516

ABSTRACT

The effect of single-walled carbon nanotubes (SWCNTs) on the expression of a subset of immune response, apoptosis and cell proliferation -associated genes was studied in normal human astrocytes (line NHA/TS). In the cells treated with SWCNTs (2, 10 and 50 ng/ml of medium for 24 h) we observed a strong dose-dependent down-regulation of the expression of a cell surface glycoproteins HLA-DRA (major histocompatibility complex, class II, DR alpha) and HLA-DRB1. At the same time, the expression of HLA-F (major histocompatibility complex, class I, F), LMNB1 (lamin B1), and HTRA1 (high temperature requirement A1) genes as well as the level of miR-190b and miR-7 was up-regulated in NHA/TS subjected to different concentrations of SWCNTs. After 24 h of treatment with SWCNTs we detected a dose-dependent suppression of PHLDA2 (pleckstrin homology-like domain, family A, member 2) gene expression in these cells. Obtained data show that SWCNTs may affect an immune response, in particular through suppression of HLA-DRA and HLA-DRB1 gene expressions and that miR-190b and miR-7 possibly participated in this suppression. Deregulation of lamin B1 expression indicates the possibility of alterations in genome stability following treatment of astrocytes with SWCNTs. Thus, more caution is needed in biomedical application of SWCNTs.


Subject(s)
Astrocytes/drug effects , Gene Expression Regulation/drug effects , Nanotubes, Carbon/toxicity , Astrocytes/immunology , Astrocytes/metabolism , Cell Line , Gene Expression Regulation/immunology , HLA-DR alpha-Chains/genetics , High-Temperature Requirement A Serine Peptidase 1/genetics , Histocompatibility Antigens Class I/genetics , Humans , Lamin Type B/genetics , MicroRNAs/genetics , Nuclear Proteins/genetics , RNA, Messenger/metabolism
4.
Nanoscale Res Lett ; 10(1): 499, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26714861

ABSTRACT

The main aim of this work was to evaluate the effect of doxorubicin in complex with C60 fullerene (C60 + Dox) on the growth and metastasis of Lewis lung carcinoma in mice and to perform a primary screening of the potential mechanisms of C60 + Dox complex action. We found that volume of tumor from mice treated with the C60 + Dox complex was 1.4 times less than that in control untreated animals. The number of metastatic foci in lungs of animals treated with C60 + Dox complex was two times less than that in control untreated animals. Western blot analysis of tumor lysates revealed a significant decrease in the level of heat-shock protein 70 in animals treated with C60 + Dox complex. Moreover, the treatment of tumor-bearing mice was accompanied by the increase of cytotoxic activity of immune cells. Thus, the potential mechanisms of antitumor effect of C60 + Dox complex include both its direct action on tumor cells by inducing cell death and increasing of stress sensitivity and an immunomodulating effect. The obtained results provide a scientific basis for further application of C60 + Dox nanocomplexes as treatment agents in cancer chemotherapy.

5.
Eur Biophys J ; 43(6-7): 265-76, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24748122

ABSTRACT

C60 fullerenes are spherical molecules composed purely of carbon atoms. They inspire a particularly strong scientific interest because of their specific physico-chemical properties and potential medical and nanotechnological applications. In this work we are focusing on studying the influence of the pristine C60 fullerene on biological activity of some aromatic drug molecules in human buccal epithelial cells. Assessment of the heterochromatin structure in the cell nucleus as well as the barrier function of the cell membrane was performed. The methods of cell microelectrophoresis and atomic force microscopy were also applied. A concentration-dependent restoration of the functional activity of the cellular nucleus after exposure to DNA-binding drugs (doxorubicin, proflavine and ethidium bromide) has been observed in human buccal epithelial cells upon addition of C60 fullerene at a concentration of ~10(-5 )M. The results were shown to follow the framework of interceptor/protector action theory, assuming that non-covalent complexation between C60 fullerene and the drugs (i.e., hetero-association) is the major process responsible for the observed biological effects. An independent confirmation of this hypothesis was obtained via investigation of the cellular response of buccal epithelium to the coadministration of the aromatic drugs and caffeine, and it is based on the well-established role of hetero-association in drug-caffeine systems. The results indicate that C60 fullerene may reverse the effects caused by the aromatic drugs, thereby pointing out the potential possibility of the use of aromatic drugs in combination with C60 fullerene for regulation of their medico-biological action.


Subject(s)
Fullerenes/pharmacology , Hydrocarbons, Aromatic/pharmacology , Adult , Caffeine/pharmacology , Drug Interactions , Epithelial Cells/drug effects , Humans
6.
Tumori ; 94(2): 278-83, 2008.
Article in English | MEDLINE | ID: mdl-18564617

ABSTRACT

An increase of the intracellular reactive oxygen species (ROS) concentration leads to the development of oxidative stress and, thus, to the damage of cell components. The cause-and-effect relations between these processes have not been fully established yet. The ability of photo excited supramolecular composites containing fullerenes C60 immobilized at nanosilica particles to generate reactive oxygen species (ROS) in cells of two types (rat thymocytes, and transformed cells of ascite Erlich carcinoma, EAC, and leucosis L1210) is demonstrated. The damaging effect of photo excited C60-composites are shown, which appeared to be selective and manifested in transformed cells, but not in thymocytes. It has been shown that after the irradiation of aqueous solutions or cell suspensions in the presence of fullerene C60, the generation of reactive oxygen species is observed. It has been shown that the influence of photo excited fullerene C60 on metabolic processes depends on the composition of C60-containing complex and on the type of the cells. The damaging effects of photo excited fullerene C60-containing composites were demonstrated to be selective. The data presented suggest that the application of fullerene C60-containing composites for the selective activation of ROS-dependent death program in certain types of tumor cells is very promising.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Survival/drug effects , Fullerenes/pharmacology , Nanocomposites , Neoplasms/drug therapy , Photochemotherapy/methods , Reactive Oxygen Species/pharmacology , Thymus Gland/cytology , Animals , Antineoplastic Agents/therapeutic use , Carcinoma, Ehrlich Tumor/drug therapy , Fullerenes/therapeutic use , Leukemia L1210/drug therapy , Neoplasms/pathology , Neoplasms/radiotherapy , Rats , Rats, Wistar , Reactive Oxygen Species/therapeutic use , Silicon Dioxide
7.
Exp Oncol ; 26(4): 326-7, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15627068

ABSTRACT

AIM: To study the ability of fullerenes C(60) to catalyse the reactions of generation of reactive oxygen species (ROS) in water solution after photoexcitation and to affect the vitality of tumor cells in vitro. METHODS: The number and vitality of cultured Ehrlich carcinoma cells or rat thymocytes were determined using tripane blue, ROS levels were registered using the methods of electron paramagnetic resonance (EPR) spectroscopy and spin traps, photoirradiation of water solution of fullerenes C(60) with visible light was carried out using mercury lamp. RESULTS: Irradiation of water solution of fullerenes C(60) (10(-5) M) was accompanied with generation of ROS with the rate of 10 nMol/ml/min. After addition of irradiated C(60) solution to suspension of thymocytes or ascite cells, the decrease of the number of vital cells by 67 and 58%, respectively, has been registered. CONCLUSION: Photoirradiated water solutions of fullerenes C(60) may be potentially useful for photodynamic therapy of tumors as ROS catalytic system.


Subject(s)
Carcinoma, Ehrlich Tumor/pathology , Fullerenes/pharmacology , Photochemotherapy/methods , Reactive Oxygen Species/metabolism , Animals , Catalysis , Electron Spin Resonance Spectroscopy , Light , Photochemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...