Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
1.
Bioorg Chem ; 147: 107365, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636436

ABSTRACT

Protein prenylation is one example of a broad class of post-translational modifications where proteins are covalently linked to various hydrophobic moieties. To globally identify and monitor levels of all prenylated proteins in a cell simultaneously, our laboratory and others have developed chemical proteomic approaches that rely on the metabolic incorporation of isoprenoid analogues bearing bio-orthogonal functionality followed by enrichment and subsequent quantitative proteomic analysis. Here, several improvements in the synthesis of the alkyne-containing isoprenoid analogue C15AlkOPP are reported to improve synthetic efficiency. Next, metabolic labeling with C15AlkOPP was optimized to obtain useful levels of metabolic incorporation of the probe in several types of primary cells. Those conditions were then used to study the prenylomes of motor neurons (ES-MNs), astrocytes (ES-As), and their embryonic stem cell progenitors (ESCs), which allowed for the identification of 54 prenylated proteins from ESCs, 50 from ES-MNs, and 84 from ES-As, representing all types of prenylation. Bioinformatic analysis revealed specific enriched pathways, including nervous system development, chemokine signaling, Rho GTPase signaling, and adhesion. Hierarchical clustering showed that most enriched pathways in all three cell types are related to GTPase activity and vesicular transport. In contrast, STRING analysis showed significant interactions in two populations that appear to be cell type dependent. The data provided herein demonstrates that robust incorporation of C15AlkOPP can be obtained in ES-MNs and related primary cells purified via magnetic-activated cell sorting allowing the identification and quantification of numerous prenylated proteins. These results suggest that metabolic labeling with C15AlkOPP should be an effective approach for investigating the role of prenylated proteins in primary cells in both normal cells and disease pathologies, including ALS.


Subject(s)
Alkynes , Astrocytes , Motor Neurons , Protein Prenylation , Astrocytes/metabolism , Astrocytes/cytology , Animals , Alkynes/chemistry , Alkynes/chemical synthesis , Motor Neurons/metabolism , Motor Neurons/cytology , Terpenes/chemistry , Terpenes/chemical synthesis , Terpenes/metabolism , Mice , Molecular Structure , Cells, Cultured
2.
Cell Rep ; 43(4): 113999, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38554281

ABSTRACT

Motor neuron (MN) demise is a hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Post-transcriptional gene regulation can control RNA's fate, and defects in RNA processing are critical determinants of MN degeneration. N6-methyladenosine (m6A) is a post-transcriptional RNA modification that controls diverse aspects of RNA metabolism. To assess the m6A requirement in MNs, we depleted the m6A methyltransferase-like 3 (METTL3) in cells and mice. METTL3 depletion in embryonic stem cell-derived MNs has profound and selective effects on survival and neurite outgrowth. Mice with cholinergic neuron-specific METTL3 depletion display a progressive decline in motor behavior, accompanied by MN loss and muscle denervation, culminating in paralysis and death. Reader proteins convey m6A effects, and their silencing phenocopies METTL3 depletion. Among the m6A targets, we identified transactive response DNA-binding protein 43 (TDP-43) and discovered that its expression is under epitranscriptomic control. Thus, impaired m6A signaling disrupts MN homeostasis and triggers neurodegeneration conceivably through TDP-43 deregulation.


Subject(s)
Cholinergic Neurons , Methyltransferases , Neuromuscular Diseases , Animals , Humans , Mice , Adenosine/metabolism , Adenosine/analogs & derivatives , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/genetics , Cholinergic Neurons/metabolism , Cholinergic Neurons/pathology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Motor Neurons/metabolism , Motor Neurons/pathology , Neuromuscular Diseases/metabolism , Neuromuscular Diseases/pathology
3.
bioRxiv ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38496415

ABSTRACT

Protein prenylation is one example of a broad class of post-translational modifications where proteins are covalently linked to various hydrophobic moieties. To globally identify and monitor levels of all prenylated proteins in a cell simultaneously, our laboratory and others have developed chemical proteomic approaches that rely on the metabolic incorporation of isoprenoid analogues bearing bio-orthogonal functionality followed by enrichment and subsequent quantitative proteomic analysis. Here, several improvements in the synthesis of the alkyne-containing isoprenoid analogue C15AlkOPP are reported to improve synthetic efficiency. Next, metabolic labeling with C15AlkOPP was optimized to obtain useful levels of metabolic incorporation of the probe in several types of primary cells. Those conditions were then used to study the prenylomes of motor neurons (ES-MNs), astrocytes (ES-As), and their embryonic stem cell progenitors (ESCs), which allowed for the identification of 54 prenylated proteins from ESCs, 50 from ES-MNs and 84 from ES-As, representing all types of prenylation. Bioinformatic analysis revealed specific enriched pathways, including nervous system development, chemokine signaling, Rho GTPase signaling, and adhesion. Hierarchical clustering showed that most enriched pathways in all three cell types are related to GTPase activity and vesicular transport. In contrast, STRING analysis showed significant interactions in two populations that appear to be cell type dependent. The data provided herein demonstrates that robust incorporation of C15AlkOPP can be obtained in ES-MNs and related primary cells purified via magnetic-activated cell sorting allowing the identification and quantification of numerous prenylated proteins. These results suggest that metabolic labeling with C15AlkOPP should be an effective approach for investigating the role of prenylated proteins in primary cells in both normal cells and disease pathologies, including ALS.

4.
Nat Commun ; 14(1): 3956, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37407548

ABSTRACT

The ability to use blood to predict the outcomes of Parkinson's disease, including disease progression and cognitive and motor complications, would be of significant clinical value. We undertook bulk RNA sequencing from the caudate and putamen of postmortem Parkinson's disease (n = 35) and control (n = 40) striatum, and compared molecular profiles with clinical features and bulk RNA sequencing data obtained from antemortem peripheral blood. Cognitive and motor complications of Parkinson's disease were associated with molecular changes in the caudate (stress response) and putamen (endothelial pathways) respectively. Later and earlier-onset Parkinson's disease were molecularly distinct, and disease duration was associated with changes in caudate (oligodendrocyte development) and putamen (cellular senescence), respectively. Transcriptome patterns in the postmortem Parkinson's disease brain were also evident in antemortem peripheral blood, and correlated with clinical features of the disease. Together, these findings identify molecular signatures in Parkinson's disease patients' brain and blood of potential pathophysiologic and prognostic importance.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/metabolism , Transcriptome , Brain/metabolism , Corpus Striatum/metabolism , Putamen
5.
Mov Disord ; 38(8): 1541-1545, 2023 08.
Article in English | MEDLINE | ID: mdl-37218402

ABSTRACT

OBJECTIVE: To assess for TDP-43 deposits in brains with and without a LRRK2 G2019S mutation. BACKGROUND: LRRK2 G2019S mutations have been associated with parkinsonism and a wide range of pathological findings. There are no systematic studies examining the frequency and extent of TDP-43 deposits in neuropathological samples from LRRK2 G2019S carriers. METHODS: Twelve brains with LRRK2 G2019S mutations were available for study from the New York Brain Bank at Columbia University; 11 of them had samples available for TDP-43 immunostaining. Clinical, demographic, and pathological data are reported for 11 brains with a LRRK2 G2019S mutation and compared to 11 brains without GBA1 or LRRK2 G2019S mutations with a pathologic diagnosis of Parkinson's disease (PD) or diffuse Lewy body disease. They were frequency matched by age, gender, parkinsonism age of onset, and disease duration. RESULTS: TDP-43 aggregates were present in 73% (n = 8) of brains with a LRRK2 mutation and 18% (n = 2) of brains without a LRRK2 mutation (P = 0.03). In one brain with a LRRK2 mutation, TDP-43 proteinopathy was the primary neuropathological change. CONCLUSIONS: Extranuclear TDP-43 aggregates are observed with greater frequency in LRRK2 G2019S autopsies compared to PD cases without a LRRK2 G2019S mutation. The association between LRRK2 and TDP-43 should be further explored. © 2023 International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Parkinsonian Disorders , Humans , Brain , DNA-Binding Proteins/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mutation/genetics , Parkinson Disease/genetics , Parkinsonian Disorders/genetics , Protein Serine-Threonine Kinases/genetics
6.
Adv Neurobiol ; 28: 323-352, 2022.
Article in English | MEDLINE | ID: mdl-36066831

ABSTRACT

Motoneuron diseases (MNDs) represent a heterogeneous group of progressive paralytic disorders, mainly characterized by the loss of upper (corticospinal) motoneurons, lower (spinal) motoneurons or, often both. MNDs can occur from birth to adulthood and have a highly variable clinical presentation, even within gene-positive forms, suggesting the existence of environmental and genetic modifiers. A combination of cell autonomous and non-cell autonomous mechanisms contributes to motoneuron degeneration in MNDs, suggesting multifactorial pathogenic processes.


Subject(s)
Amyotrophic Lateral Sclerosis , Motor Neuron Disease , Adult , Amyotrophic Lateral Sclerosis/genetics , Humans , Motor Neuron Disease/pathology , Motor Neurons , Superoxide Dismutase/genetics , Superoxide Dismutase-1
8.
Proc Natl Acad Sci U S A ; 119(26): e2118755119, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35749364

ABSTRACT

Retromer is a heteropentameric complex that plays a specialized role in endosomal protein sorting and trafficking. Here, we report a reduction in the retromer proteins-vacuolar protein sorting 35 (VPS35), VPS26A, and VPS29-in patients with amyotrophic lateral sclerosis (ALS) and in the ALS model provided by transgenic (Tg) mice expressing the mutant superoxide dismutase-1 G93A. These changes are accompanied by a reduction of levels of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit GluA1, a proxy of retromer function, in spinal cords from Tg SOD1G93A mice. Correction of the retromer deficit by a viral vector expressing VPS35 exacerbates the paralytic phenotype in Tg SOD1G93A mice. Conversely, lowering Vps35 levels in Tg SOD1G93A mice ameliorates the disease phenotype. In light of these findings, we propose that mild alterations in retromer inversely modulate neurodegeneration propensity in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Vesicular Transport Proteins , Amyotrophic Lateral Sclerosis/metabolism , Animals , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Spinal Cord/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
9.
NPJ Parkinsons Dis ; 8(1): 52, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35468903

ABSTRACT

Lipid profiles in biological fluids from patients with Parkinson's disease (PD) are increasingly investigated in search of biomarkers. However, the lipid profiles in genetic PD remain to be determined, a gap of knowledge of particular interest in PD associated with mutant α-synuclein (SNCA), given the known relationship between this protein and lipids. The objective of this research is to identify serum lipid composition from SNCA A53T mutation carriers and to compare these alterations to those found in cells and transgenic mice carrying the same genetic mutation. We conducted an unbiased lipidomic analysis of 530 lipid species from 34 lipid classes in serum of 30 participants with SNCA mutation with and without PD and 30 healthy controls. The primary analysis was done between 22 PD patients with SNCA+ (SNCA+/PD+) and 30 controls using machine-learning algorithms and traditional statistics. We also analyzed the lipid composition of human clonal-cell lines and tissue from transgenic mice overexpressing the same SNCA mutation. We identified specific lipid classes that best discriminate between SNCA+/PD+ patients and healthy controls and found certain lipid species, mainly from the glycerophosphatidylcholine and triradylglycerol classes, that are most contributory to this discrimination. Most of these alterations were also present in human derived cells and transgenic mice carrying the same mutation. Our combination of lipidomic and machine learning analyses revealed alterations in glycerophosphatidylcholine and triradylglycerol in sera from PD patients as well as cells and tissues expressing mutant α-Syn. Further investigations are needed to establish the pathogenic significance of these α-Syn-associated lipid changes.

10.
J Neurol ; 269(3): 1107-1113, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34482434

ABSTRACT

BACKGROUND: With the explosion of COVID-19 globally, it was unclear if people with Parkinson's disease (PD) were at increased risk for severe manifestations or negative outcomes. OBJECTIVES: To report on people with PD who had suspected or confirmed COVID-19 to understand how COVID-19 manifested in PD patients. METHODS: We surveyed PD patients who reported COVID-19 to their Movement Disorders specialists at Columbia University Irving Medical Center and respondents from an online survey administered by the Parkinson's Foundation that assessed COVID-19 symptoms, general clinical outcomes and changes in motor and non-motor PD symptoms. RESULTS: Forty-six participants with PD and COVID-19 were enrolled. Similar to the general population, the manifestations of COVID-19 among people with PD were heterogeneous ranging from asymptomatic carriers (1/46) to death (6/46). The most commonly reported COVID-19 symptoms were fever/chills, fatigue, cough, weight loss, and muscle pain. Worsening and new onset of motor and non-motor PD symptoms during COVID-19 illness were also reported, including dyskinesia, rigidity, balance disturbances, anxiety, depression, and insomnia. CONCLUSION: We did not find sufficient evidence that PD is an independent risk factor for severe COVID-19 and death. Larger studies with controls are required to understand this further. Longitudinal follow-up of these participants will allow for observation of possible long-term effects of COVID-19 in PD patients.


Subject(s)
COVID-19 , Parkinson Disease , Anxiety/diagnosis , Humans , Parkinson Disease/complications , Parkinson Disease/diagnosis , Parkinson Disease/epidemiology , SARS-CoV-2 , Surveys and Questionnaires
11.
Mov Disord ; 37(2): 253-263, 2022 02.
Article in English | MEDLINE | ID: mdl-34939221

ABSTRACT

Gait and balance abnormalities develop commonly in Parkinson's disease and are among the motor symptoms most disabling and refractory to dopaminergic or other treatments, including deep brain stimulation. Efforts to develop effective therapies are challenged by limited understanding of these complex disorders. There is a major need for novel and appropriately targeted research to expedite progress in this area. The Scientific Issues Committee of the International Parkinson and Movement Disorder Society has charged a panel of experts in the field to consider the current knowledge gaps and determine the research routes with highest potential to generate groundbreaking data. © 2021 International Parkinson and Movement Disorder Society.


Subject(s)
Gait Disorders, Neurologic , Parkinson Disease , Dopamine , Gait/physiology , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/therapy , Humans , Parkinson Disease/complications , Parkinson Disease/therapy , Research
13.
Nat Commun ; 12(1): 5040, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34413305

ABSTRACT

SMN is a ubiquitously expressed protein and is essential for life. SMN deficiency causes the neurodegenerative disease spinal muscular atrophy (SMA), the leading genetic cause of infant mortality. SMN interacts with itself and other proteins to form a complex that functions in the assembly of ribonucleoproteins. SMN is modified by SUMO (Small Ubiquitin-like Modifier), but whether sumoylation is required for the functions of SMN that are relevant to SMA pathogenesis is not known. Here, we show that inactivation of a SUMO-interacting motif (SIM) alters SMN sub-cellular distribution, the integrity of its complex, and its function in small nuclear ribonucleoproteins biogenesis. Expression of a SIM-inactivated mutant of SMN in a mouse model of SMA slightly extends survival rate with limited and transient correction of motor deficits. Remarkably, although SIM-inactivated SMN attenuates motor neuron loss and improves neuromuscular junction synapses, it fails to prevent the loss of sensory-motor synapses. These findings suggest that sumoylation is important for proper assembly and function of the SMN complex and that loss of this post-translational modification impairs the ability of SMN to correct selective deficits in the sensory-motor circuit of SMA mice.


Subject(s)
Motor Neurons/metabolism , Muscular Atrophy, Spinal/pathology , Neurodegenerative Diseases/pathology , Ribonucleoproteins, Small Nuclear/metabolism , SMN Complex Proteins/metabolism , Sumoylation , Synapses/metabolism , Animals , Animals, Genetically Modified , Cells, Cultured , Disease Models, Animal , Humans , Mice , Motor Neurons/pathology , Muscular Atrophy, Spinal/metabolism , Neurodegenerative Diseases/metabolism , Synapses/pathology , Zebrafish
14.
Res Sq ; 2021 May 21.
Article in English | MEDLINE | ID: mdl-34031650

ABSTRACT

COVID-19 patients commonly present with neurological signs of central nervous system (CNS)1-3 and/or peripheral nervous system dysfunction4. However, which neural cells are permissive to infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been controversial. Here, we show that midbrain dopamine (DA) neurons derived from human pluripotent stem cells (hPSCs) are selectively permissive to SARS-CoV-2 infection both in vitro and upon transplantation in vivo, and that SARS-CoV-2 infection triggers a DA neuron inflammatory and cellular senescence response. A high-throughput screen in hPSC-derived DA neurons identified several FDA approved drugs, including riluzole, metformin, and imatinib, that can rescue the cellular senescence phenotype and prevent SARS-CoV-2 infection. RNA-seq analysis of human ventral midbrain tissue from COVID-19 patients, using formalin-fixed paraffin-embedded autopsy samples, confirmed the induction of an inflammatory and cellular senescence signature and identified low levels of SARS-CoV-2 transcripts. Our findings demonstrate that hPSC-derived DA neurons can serve as a disease model to study neuronal susceptibility to SARS-CoV-2 and to identify candidate neuroprotective drugs for COVID-19 patients. The susceptibility of hPSC-derived DA neurons to SARS-CoV-2 and the observed inflammatory and senescence transcriptional responses suggest the need for careful, long-term monitoring of neurological problems in COVID-19 patients.

15.
Mov Disord ; 36(8): 1772-1780, 2021 08.
Article in English | MEDLINE | ID: mdl-33963552

ABSTRACT

The last decade has seen exciting advances in the development of potential stem cell-based therapies for Parkinson's disease (PD), which have used different types of stem cells as starting material. These cells have been developed primarily to replace dopamine-producing neurons in the substantia nigra that are progressively lost in the disease process. The aim is to largely restore lost motor functions, whilst not ever being curative. We discuss cell-based strategies that will have to fulfill important criteria to become effective and competitive therapies for PD. These criteria include reproducibly producing sufficient numbers of cells with an authentic substantia nigra dopamine neuron A9 phenotype, which can integrate into the host brain after transplantation and form synapses (considered crucial for long-term functional benefits). Furthermore, it is essential that transplanted cells exhibit no, or only very low levels of, proliferation without tumor formation at the site of grafting. Cumulative research has shown that stem cell-based approaches continue to have great potential in PD, but key questions remain to be answered. Here, we review the most recent progress in research on stem cell-based dopamine neuron replacement therapy for PD and briefly discuss what the immediate future might hold. © 2021 International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Dopamine , Dopaminergic Neurons , Humans , Parkinson Disease/therapy , Stem Cell Transplantation , Substantia Nigra
16.
Trends Neurosci ; 44(8): 658-668, 2021 08.
Article in English | MEDLINE | ID: mdl-34006386

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is the most common adult-onset paralytic disorder, characterized mainly by a loss of motor neurons (MNs) in the CNS. Over the past decades, thanks to intense investigations performed in both in vivo and in vitro models of ALS, major progress has been made toward gaining insights into the pathobiology of this incurable, fatal disorder. Among these advances is the growing recognition that non-neuronal cells participate in the degeneration of MNs in ALS, which could transform our understanding of the neurobiology of disease and the ability to devise effective disease-modifying therapies. In this review, we examine the contribution of non-cell-autonomous processes to the pathogenesis of ALS, with a focus on glial cells and in particular on astrocytes.


Subject(s)
Amyotrophic Lateral Sclerosis , Amyotrophic Lateral Sclerosis/genetics , Astrocytes , Humans , Motor Neurons
17.
Brain ; 144(9): 2696-2708, 2021 10 22.
Article in English | MEDLINE | ID: mdl-33856027

ABSTRACT

Many patients with SARS-CoV-2 infection develop neurological signs and symptoms; although, to date, little evidence exists that primary infection of the brain is a significant contributing factor. We present the clinical, neuropathological and molecular findings of 41 consecutive patients with SARS-CoV-2 infections who died and underwent autopsy in our medical centre. The mean age was 74 years (38-97 years), 27 patients (66%) were male and 34 (83%) were of Hispanic/Latinx ethnicity. Twenty-four patients (59%) were admitted to the intensive care unit. Hospital-associated complications were common, including eight patients (20%) with deep vein thrombosis/pulmonary embolism, seven (17%) with acute kidney injury requiring dialysis and 10 (24%) with positive blood cultures during admission. Eight (20%) patients died within 24 h of hospital admission, while 11 (27%) died more than 4 weeks after hospital admission. Neuropathological examination of 20-30 areas from each brain revealed hypoxic/ischaemic changes in all brains, both global and focal; large and small infarcts, many of which appeared haemorrhagic; and microglial activation with microglial nodules accompanied by neuronophagia, most prominently in the brainstem. We observed sparse T lymphocyte accumulation in either perivascular regions or in the brain parenchyma. Many brains contained atherosclerosis of large arteries and arteriolosclerosis, although none showed evidence of vasculitis. Eighteen patients (44%) exhibited pathologies of neurodegenerative diseases, which was not unexpected given the age range of our patients. We examined multiple fresh frozen and fixed tissues from 28 brains for the presence of viral RNA and protein, using quantitative reverse-transcriptase PCR, RNAscope® and immunocytochemistry with primers, probes and antibodies directed against the spike and nucleocapsid regions. The PCR analysis revealed low to very low, but detectable, viral RNA levels in the majority of brains, although they were far lower than those in the nasal epithelia. RNAscope® and immunocytochemistry failed to detect viral RNA or protein in brains. Our findings indicate that the levels of detectable virus in coronavirus disease 2019 brains are very low and do not correlate with the histopathological alterations. These findings suggest that microglial activation, microglial nodules and neuronophagia, observed in the majority of brains, do not result from direct viral infection of brain parenchyma, but more likely from systemic inflammation, perhaps with synergistic contribution from hypoxia/ischaemia. Further studies are needed to define whether these pathologies, if present in patients who survive coronavirus disease 2019, might contribute to chronic neurological problems.


Subject(s)
Brain Infarction/pathology , Brain/pathology , COVID-19/pathology , Hypoxia-Ischemia, Brain/pathology , Intracranial Hemorrhages/pathology , Acute Kidney Injury/complications , Acute Kidney Injury/physiopathology , Acute Kidney Injury/therapy , Adult , Aged , Aged, 80 and over , Bacteremia/complications , Brain/metabolism , Brain Infarction/complications , COVID-19/complications , COVID-19/physiopathology , Coronavirus Nucleocapsid Proteins/metabolism , Female , Humans , Hypoxia-Ischemia, Brain/complications , Inflammation , Intensive Care Units , Intracranial Hemorrhages/complications , Male , Microglia/pathology , Middle Aged , Neurons/pathology , Phagocytosis , Phosphoproteins/metabolism , Pulmonary Embolism/complications , Pulmonary Embolism/physiopathology , RNA, Viral/metabolism , Renal Dialysis , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Survival Rate , T-Lymphocytes/pathology , Venous Thrombosis/complications , Venous Thrombosis/physiopathology
18.
NPJ Parkinsons Dis ; 7(1): 10, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33479241

ABSTRACT

As the COVID-19 pandemic continues to affect the international community, very little is known about its impact on the health and day-to-day activities of people with Parkinson's disease (PwPD). To better understand the emotional and behavioral consequences of the public health policies implemented to mitigate the spread of SARS-CoV-2 in PwPD, and to explore the factors contributing to accessing alternative health care mechanisms, such as telehealth, we administered an anonymous knowledge, attitude, and practice survey to PwPD and care partners, via the mailing lists of the Parkinson's Foundation and Columbia University Parkinson's Disease Center of Excellence with an average response rate of 19.3%. Sufficient information was provided by 1,342 PwPD to be included in the final analysis. Approximately half of respondents reported a negative change in PD symptoms, with 45-66% reporting mood disturbances. Telehealth use increased from 9.7% prior to the pandemic to 63.5% during the pandemic. Higher income and higher education were associated with telehealth use. Services were more often used for doctor's appointment than physical, occupational, speech, or mental health therapies. Almost half (46%) of PwPD preferred to continue using telehealth always or sometimes after the coronavirus outbreak had ended. Having received support/instruction for telehealth and having a care partner, friend, or family member to help them with the telehealth visit increased the likelihood of continuous use of telehealth after the pandemic ended. Taken together, PD symptoms and management practices were markedly affected by COVID-19. Given the observed demographic limitations of telehealth, expanding its implementation to include additional physical, occupational, psychological, and speech therapies, increasing support for telehealth, as well as reaching underserved (low income) populations is urgently required.

19.
Nat Commun ; 11(1): 5579, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33149111

ABSTRACT

Cell-to-cell communications are critical determinants of pathophysiological phenotypes, but methodologies for their systematic elucidation are lacking. Herein, we propose an approach for the Systematic Elucidation and Assessment of Regulatory Cell-to-cell Interaction Networks (SEARCHIN) to identify ligand-mediated interactions between distinct cellular compartments. To test this approach, we selected a model of amyotrophic lateral sclerosis (ALS), in which astrocytes expressing mutant superoxide dismutase-1 (mutSOD1) kill wild-type motor neurons (MNs) by an unknown mechanism. Our integrative analysis that combines proteomics and regulatory network analysis infers the interaction between astrocyte-released amyloid precursor protein (APP) and death receptor-6 (DR6) on MNs as the top predicted ligand-receptor pair. The inferred deleterious role of APP and DR6 is confirmed in vitro in models of ALS. Moreover, the DR6 knockdown in MNs of transgenic mutSOD1 mice attenuates the ALS-like phenotype. Our results support the usefulness of integrative, systems biology approach to gain insights into complex neurobiological disease processes as in ALS and posit that the proposed methodology is not restricted to this biological context and could be used in a variety of other non-cell-autonomous communication mechanisms.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Astrocytes/metabolism , Cell Communication/physiology , Cell Death/physiology , Motor Neurons/metabolism , Superoxide Dismutase-1/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyotrophic Lateral Sclerosis/enzymology , Amyotrophic Lateral Sclerosis/genetics , Animals , Cells, Cultured , Computational Biology , Disease Models, Animal , Gene Knockdown Techniques , Gene Silencing , Humans , Ligands , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Transgenic , Proteomics , RNA, Small Interfering , Receptors, Tumor Necrosis Factor/genetics , Receptors, Tumor Necrosis Factor/metabolism , Superoxide Dismutase-1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...