Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Nat Commun ; 15(1): 1359, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355578

ABSTRACT

Acute Myeloid Leukemia (AML) is caused by multiple mutations which dysregulate growth and differentiation of myeloid cells. Cells adopt different gene regulatory networks specific to individual mutations, maintaining a rapidly proliferating blast cell population with fatal consequences for the patient if not treated. The most common treatment option is still chemotherapy which targets such cells. However, patients harbour a population of quiescent leukemic stem cells (LSCs) which can emerge from quiescence to trigger relapse after therapy. The processes that allow such cells to re-grow remain unknown. Here, we examine the well characterised t(8;21) AML sub-type as a model to address this question. Using four primary AML samples and a novel t(8;21) patient-derived xenograft model, we show that t(8;21) LSCs aberrantly activate the VEGF and IL-5 signalling pathways. Both pathways operate within a regulatory circuit consisting of the driver oncoprotein RUNX1::ETO and an AP-1/GATA2 axis allowing LSCs to re-enter the cell cycle while preserving self-renewal capacity.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mutation , Stem Cells/metabolism , Neoplastic Stem Cells/metabolism
2.
Cancer Res Commun ; 3(8): 1501-1513, 2023 08.
Article in English | MEDLINE | ID: mdl-37565053

ABSTRACT

Tumor-specific MHC class II (tsMHC-II) expression impacts tumor microenvironmental immunity. tsMHC-II positive cancer cells may act as surrogate antigen-presenting cells and targets for CD4+ T cell-mediated lysis. In colorectal cancer, tsMHC-II negativity is common, in cell lines due to CIITA promoter methylation. To clarify mechanisms of tsMHC-II repression in colorectal cancer, we analyzed colorectal cancer organoids which are epigenetically faithful to tissue of origin. 15 primary colorectal cancer organoids were treated with IFNγ ± epigenetic modifiers: flow cytometry was used for tsMHC-II expression. qRT-PCR, total RNA sequencing, nanopore sequencing, bisulfite conversion/pyrosequencing, and Western blotting was used to quantitate CIITA, STAT1, IRF1, and JAK1 expression, mutations and promoter methylation and chromatin immunoprecipitation to quantitate H3K9ac, H3K9Me2, and EZH2 occupancy at CIITA. We define three types of response to IFNγ in colorectal cancer: strong, weak, and noninducibility. Delayed and restricted expression even with prolonged IFNγ exposure was due to IFNγ-mediated EZH2 occupancy at CIITA. tsMHC-II expression was enhanced by EZH2 and histone deacetylase inhibition in the weakly inducible organoids. Noninducibility is seen in three consensus molecular subtype 1 (CMS1) organoids due to JAK1 mutation. No organoid demonstrates CIITA promoter methylation. Providing IFNγ signaling is intact, most colorectal cancer organoids are class II inducible. Upregulation of tsMHC-II through targeted epigenetic therapy is seen in one of fifteen organoids. Our approach can serve as a blueprint for investigating the heterogeneity of specific epigenetic mechanisms of immune suppression across individual patients in other cancers and how these might be targeted to inform the conduct of future trials of epigenetic therapies as immune adjuvants more strategically in cancer. Significance: Cancer cell expression of MHC class II significantly impacts tumor microenvironmental immunity. Previous studies investigating mechanisms of repression of IFNγ-inducible class II expression using cell lines demonstrate epigenetic silencing of IFN pathway genes as a frequent immune evasion strategy. Unlike cell lines, patient-derived organoids maintain epigenetic fidelity to tissue of origin. In the first such study, we analyze patterns, dynamics, and epigenetic control of IFNγ-induced class II expression in a series of colorectal cancer organoids.


Subject(s)
Colorectal Neoplasms , Genes, MHC Class II , Humans , Interferon-gamma/pharmacology , Methylation , Cell Line , Colorectal Neoplasms/genetics
3.
J Clin Invest ; 133(7)2023 04 03.
Article in English | MEDLINE | ID: mdl-36795492

ABSTRACT

Although protein hydroxylation is a relatively poorly characterized posttranslational modification, it has received significant recent attention following seminal work uncovering its role in oxygen sensing and hypoxia biology. Although the fundamental importance of protein hydroxylases in biology is becoming clear, the biochemical targets and cellular functions often remain enigmatic. JMJD5 is a "JmjC-only" protein hydroxylase that is essential for murine embryonic development and viability. However, no germline variants in JmjC-only hydroxylases, including JMJD5, have yet been described that are associated with any human pathology. Here we demonstrate that biallelic germline JMJD5 pathogenic variants are deleterious to JMJD5 mRNA splicing, protein stability, and hydroxylase activity, resulting in a human developmental disorder characterized by severe failure to thrive, intellectual disability, and facial dysmorphism. We show that the underlying cellular phenotype is associated with increased DNA replication stress and that this is critically dependent on the protein hydroxylase activity of JMJD5. This work contributes to our growing understanding of the role and importance of protein hydroxylases in human development and disease.


Subject(s)
Histone Demethylases , Mixed Function Oxygenases , Humans , Animals , Mice , Histone Demethylases/genetics , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Protein Processing, Post-Translational
4.
Leukemia ; 37(1): 102-112, 2023 01.
Article in English | MEDLINE | ID: mdl-36333583

ABSTRACT

Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy caused by mutations in genes encoding transcriptional and epigenetic regulators together with signaling genes. It is characterized by a disturbance of differentiation and abnormal proliferation of hematopoietic progenitors. We have previously shown that each AML subtype establishes its own core gene regulatory network (GRN), consisting of transcription factors binding to their target genes and imposing a specific gene expression pattern that is required for AML maintenance. In this study, we integrate gene expression, open chromatin and ChIP data with promoter-capture Hi-C data to define a refined core GRN common to all patients with CEBPA-double mutant (CEBPAN/C) AML. These mutations disrupt the structure of a major regulator of myelopoiesis. We identify the binding sites of mutated C/EBPα proteins in primary cells, we show that C/EBPα, AP-1 factors and RUNX1 colocalize and are required for AML maintenance, and we employ single cell experiments to link important network nodes to the specific differentiation trajectory from leukemic stem to blast cells. Taken together, our study provides an important resource which predicts the specific therapeutic vulnerabilities of this AML subtype in human cells.


Subject(s)
Gene Regulatory Networks , Leukemia, Myeloid, Acute , Humans , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Mutation , Cell Differentiation/genetics , Leukemia, Myeloid, Acute/pathology
5.
Blood ; 140(17): 1875-1890, 2022 10 27.
Article in English | MEDLINE | ID: mdl-35839448

ABSTRACT

The fusion gene MLL/AF4 defines a high-risk subtype of pro-B acute lymphoblastic leukemia. Relapse can be associated with a lineage switch from acute lymphoblastic to acute myeloid leukemia, resulting in poor clinical outcomes caused by resistance to chemotherapies and immunotherapies. In this study, the myeloid relapses shared oncogene fusion breakpoints with their matched lymphoid presentations and originated from various differentiation stages from immature progenitors through to committed B-cell precursors. Lineage switching is linked to substantial changes in chromatin accessibility and rewiring of transcriptional programs, including alternative splicing. These findings indicate that the execution and maintenance of lymphoid lineage differentiation is impaired. The relapsed myeloid phenotype is recurrently associated with the altered expression, splicing, or mutation of chromatin modifiers, including CHD4 coding for the ATPase/helicase of the nucleosome remodelling and deacetylation complex. Perturbation of CHD4 alone or in combination with other mutated epigenetic modifiers induces myeloid gene expression in MLL/AF4+ cell models, indicating that lineage switching in MLL/AF4 leukemia is driven and maintained by disrupted epigenetic regulation.


Subject(s)
Myeloid-Lymphoid Leukemia Protein , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Epigenesis, Genetic , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Genes, Regulator , Chromatin
6.
J Mol Diagn ; 24(4): 320-336, 2022 04.
Article in English | MEDLINE | ID: mdl-35121140

ABSTRACT

Previous studies have described reverse-transcription loop-mediated isothermal amplification (RT-LAMP) for the rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in nasopharyngeal/oropharyngeal swab and saliva samples. This multisite clinical evaluation describes the validation of an improved sample preparation method for extraction-free RT-LAMP and reports clinical performance of four RT-LAMP assay formats for SARS-CoV-2 detection. Direct RT-LAMP was performed on 559 swabs and 86,760 saliva samples and RNA RT-LAMP on extracted RNA from 12,619 swabs and 12,521 saliva samples from asymptomatic and symptomatic individuals across health care and community settings. For direct RT-LAMP, overall diagnostic sensitivity (DSe) was 70.35% (95% CI, 63.48%-76.60%) on swabs and 84.62% (95% CI, 79.50%-88.88%) on saliva, with diagnostic specificity of 100% (95% CI, 98.98%-100.00%) on swabs and 100% (95% CI, 99.72%-100.00%) on saliva, compared with quantitative RT-PCR (RT-qPCR); analyzing samples with RT-qPCR ORF1ab CT values of ≤25 and ≤33, DSe values were 100% (95% CI, 96.34%-100%) and 77.78% (95% CI, 70.99%-83.62%) for swabs, and 99.01% (95% CI, 94.61%-99.97%) and 87.61% (95% CI, 82.69%-91.54%) for saliva, respectively. For RNA RT-LAMP, overall DSe and diagnostic specificity were 96.06% (95% CI, 92.88%-98.12%) and 99.99% (95% CI, 99.95%-100%) for swabs, and 80.65% (95% CI, 73.54%-86.54%) and 99.99% (95% CI, 99.95%-100%) for saliva, respectively. These findings demonstrate that RT-LAMP is applicable to a variety of use cases, including frequent, interval-based direct RT-LAMP of saliva from asymptomatic individuals who may otherwise be missed using symptomatic testing alone.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Saliva , Sensitivity and Specificity
7.
Blood ; 139(7): 1080-1097, 2022 02 17.
Article in English | MEDLINE | ID: mdl-34695195

ABSTRACT

In an effort to identify novel drugs targeting fusion-oncogene-induced acute myeloid leukemia (AML), we performed high-resolution proteomic analysis. In AML1-ETO (AE)-driven AML, we uncovered a deregulation of phospholipase C (PLC) signaling. We identified PLCgamma 1 (PLCG1) as a specific target of the AE fusion protein that is induced after AE binding to intergenic regulatory DNA elements. Genetic inactivation of PLCG1 in murine and human AML inhibited AML1-ETO dependent self-renewal programs, leukemic proliferation, and leukemia maintenance in vivo. In contrast, PLCG1 was dispensable for normal hematopoietic stem and progenitor cell function. These findings are extended to and confirmed by pharmacologic perturbation of Ca++-signaling in AML1-ETO AML cells, indicating that the PLCG1 pathway poses an important therapeutic target for AML1-ETO+ leukemic stem cells.


Subject(s)
Core Binding Factor Alpha 2 Subunit/metabolism , Gene Expression Regulation, Leukemic , Hematopoietic Stem Cells/pathology , Leukemia, Myeloid, Acute/pathology , Neoplastic Stem Cells/pathology , Oncogene Proteins, Fusion/metabolism , Phospholipase C gamma/metabolism , RUNX1 Translocation Partner 1 Protein/metabolism , Animals , Cell Self Renewal , Core Binding Factor Alpha 2 Subunit/genetics , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Neoplastic Stem Cells/metabolism , Oncogene Proteins, Fusion/genetics , Phospholipase C gamma/genetics , Proteome , RUNX1 Translocation Partner 1 Protein/genetics , Transcriptome , Translocation, Genetic
8.
Clin Microbiol Infect ; 27(9): 1348.e1-1348.e7, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33901668

ABSTRACT

OBJECTIVES: Rapid, high throughput diagnostics are a valuable tool, allowing the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in populations so as to identify and isolate people with asymptomatic and symptomatic infections. Reagent shortages and restricted access to high throughput testing solutions have limited the effectiveness of conventional assays such as quantitative RT-PCR (RT-qPCR), particularly throughout the first months of the coronavirus disease 2019 pandemic. We investigated the use of LamPORE, where loop-mediated isothermal amplification (LAMP) is coupled to nanopore sequencing technology, for the detection of SARS-CoV-2 in symptomatic and asymptomatic populations. METHODS: In an asymptomatic prospective cohort, for 3 weeks in September 2020, health-care workers across four sites (Birmingham, Southampton, Basingstoke and Manchester) self-swabbed with nasopharyngeal swabs weekly and supplied a saliva specimen daily. These samples were tested for SARS-CoV-2 RNA using the Oxford Nanopore LamPORE system and a reference RT-qPCR assay on extracted sample RNA. A second retrospective cohort of 848 patients with influenza-like illness from March 2020 to June 2020 were similarly tested from nasopharyngeal swabs. RESULTS: In the asymptomatic cohort a total of 1200 participants supplied 23 427 samples (3966 swab, 19 461 saliva) over a 3-week period. The incidence of SARS-CoV-2 detection using LamPORE was 0.95%. Diagnostic sensitivity and specificity of LamPORE was >99.5% (decreasing to approximately 98% when clustered estimation was used) in both swab and saliva asymptomatic samples when compared with the reference RT-qPCR test. In the retrospective symptomatic cohort, the incidence was 13.4% and the sensitivity and specificity were 100%. CONCLUSIONS: LamPORE is a highly accurate methodology for the detection of SARS-CoV-2 in both symptomatic and asymptomatic population settings and can be used as an alternative to RT-qPCR.


Subject(s)
COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Pandemics , SARS-CoV-2/isolation & purification , COVID-19/virology , Cohort Studies , Coronavirus Nucleocapsid Proteins/genetics , Humans , Limit of Detection , Nanopore Sequencing , Nasopharynx/virology , Polyproteins/genetics , Prospective Studies , Reproducibility of Results , Retrospective Studies , SARS-CoV-2/genetics , Saliva/virology , Sensitivity and Specificity , Viral Proteins/genetics
9.
Exp Hematol ; 92: 62-74, 2020 12.
Article in English | MEDLINE | ID: mdl-33152396

ABSTRACT

Acute myeloid leukemia development occurs in a stepwise fashion whereby an original driver mutation is followed by additional mutations. The first type of mutations tends to be in genes encoding members of the epigenetic/transcription regulatory machinery (i.e., RUNX1, DNMT3A, TET2), while the secondary mutations often involve genes encoding members of signaling pathways that cause uncontrolled growth of such cells such as the growth factor receptors c-KIT of FLT3. Patients usually present with both types of mutations, but it is currently unclear how both mutational events shape the epigenome in developing AML cells. To this end we generated an in vitro model of t(8;21) AML by expressing its driver oncoprotein RUNX1-ETO with or without a mutated (N822K) KIT protein. Expression of N822K-c-KIT strongly increases the self-renewal capacity of RUNX1-ETO-expressing cells. Global analysis of gene expression changes and alterations in the epigenome revealed that N822K-c-KIT expression profoundly influences the open chromatin landscape and transcription factor binding. However, our experiments also revealed that double mutant cells still differ from their patient-derived counterparts, highlighting the importance of studying patient cells to obtain a true picture of how gene regulatory networks have been reprogrammed during tumorigenesis.


Subject(s)
Chromatin/metabolism , Chromosomes, Human, Pair 21 , Chromosomes, Human, Pair 8 , Core Binding Factor Alpha 2 Subunit/metabolism , Leukemia, Myeloid, Acute , Mutation, Missense , Proto-Oncogene Proteins c-kit/metabolism , RUNX1 Translocation Partner 1 Protein/metabolism , Transcription, Genetic , Translocation, Genetic , Amino Acid Substitution , Chromatin/pathology , Chromosomes, Human, Pair 21/genetics , Chromosomes, Human, Pair 21/metabolism , Chromosomes, Human, Pair 8/genetics , Chromosomes, Human, Pair 8/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Female , Gene Expression Regulation, Leukemic , HEK293 Cells , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Male , Proto-Oncogene Proteins c-kit/genetics , RUNX1 Translocation Partner 1 Protein/genetics
11.
Cell Rep ; 28(12): 3022-3031.e7, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31533028

ABSTRACT

Acute myeloid leukemia (AML) is associated with mutations in transcriptional and epigenetic regulator genes impairing myeloid differentiation. The t(8;21)(q22;q22) translocation generates the RUNX1-ETO fusion protein, which interferes with the hematopoietic master regulator RUNX1. We previously showed that the maintenance of t(8;21) AML is dependent on RUNX1-ETO expression. Its depletion causes extensive changes in transcription factor binding, as well as gene expression, and initiates myeloid differentiation. However, how these processes are connected within a gene regulatory network is unclear. To address this question, we performed Promoter-Capture Hi-C assays, with or without RUNX1-ETO depletion and assigned interacting cis-regulatory elements to their respective genes. To construct a RUNX1-ETO-dependent gene regulatory network maintaining AML, we integrated cis-regulatory element interactions with gene expression and transcription factor binding data. This analysis shows that RUNX1-ETO participates in cis-regulatory element interactions. However, differential interactions following RUNX1-ETO depletion are driven by alterations in the binding of RUNX1-ETO-regulated transcription factors.


Subject(s)
CCAAT-Enhancer-Binding Proteins , Core Binding Factor Alpha 2 Subunit , Enhancer Elements, Genetic , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute , Oncogene Proteins, Fusion , Promoter Regions, Genetic , RUNX1 Translocation Partner 1 Protein , Transcription Factor AP-1 , Translocation, Genetic , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Chromosomes, Human, Pair 21/genetics , Chromosomes, Human, Pair 21/metabolism , Chromosomes, Human, Pair 8/genetics , Chromosomes, Human, Pair 8/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Gene Deletion , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , RUNX1 Translocation Partner 1 Protein/genetics , RUNX1 Translocation Partner 1 Protein/metabolism , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism
13.
Nat Genet ; 51(1): 151-162, 2019 01.
Article in English | MEDLINE | ID: mdl-30420649

ABSTRACT

Acute myeloid leukemia (AML) is a heterogeneous disease caused by a variety of alterations in transcription factors, epigenetic regulators and signaling molecules. To determine how different mutant regulators establish AML subtype-specific transcriptional networks, we performed a comprehensive global analysis of cis-regulatory element activity and interaction, transcription factor occupancy and gene expression patterns in purified leukemic blast cells. Here, we focused on specific subgroups of subjects carrying mutations in genes encoding transcription factors (RUNX1, CEBPα), signaling molecules (FTL3-ITD, RAS) and the nuclear protein NPM1). Integrated analysis of these data demonstrates that each mutant regulator establishes a specific transcriptional and signaling network unrelated to that seen in normal cells, sustaining the expression of unique sets of genes required for AML growth and maintenance.


Subject(s)
Gene Expression Regulation, Leukemic/genetics , Gene Regulatory Networks/genetics , Leukemia, Myeloid, Acute/genetics , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Nucleophosmin , Signal Transduction/genetics , Transcription Factors/genetics , Young Adult
14.
Cancer Cell ; 34(4): 626-642.e8, 2018 10 08.
Article in English | MEDLINE | ID: mdl-30300583

ABSTRACT

Oncogenic transcription factors such as the leukemic fusion protein RUNX1/ETO, which drives t(8;21) acute myeloid leukemia (AML), constitute cancer-specific but highly challenging therapeutic targets. We used epigenomic profiling data for an RNAi screen to interrogate the transcriptional network maintaining t(8;21) AML. This strategy identified Cyclin D2 (CCND2) as a crucial transmitter of RUNX1/ETO-driven leukemic propagation. RUNX1/ETO cooperates with AP-1 to drive CCND2 expression. Knockdown or pharmacological inhibition of CCND2 by an approved drug significantly impairs leukemic expansion of patient-derived AML cells and engraftment in immunodeficient murine hosts. Our data demonstrate that RUNX1/ETO maintains leukemia by promoting cell cycle progression and identifies G1 CCND-CDK complexes as promising therapeutic targets for treatment of RUNX1/ETO-driven AML.


Subject(s)
Cell Cycle Checkpoints/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Cyclin D2/genetics , Animals , Cell Line, Tumor , Chromosomes, Human, Pair 21/genetics , Gene Expression Regulation, Leukemic/genetics , Humans , Leukemia, Myeloid, Acute/genetics , Male , Mice , Oncogene Proteins, Fusion/genetics , Oncogenes/genetics , Translocation, Genetic/genetics
15.
Cell Rep ; 24(6): 1496-1511.e8, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30089261

ABSTRACT

During somatic reprogramming, Yamanaka's pioneer factors regulate a complex sequence of molecular events leading to the activation of a network of pluripotency factors, ultimately resulting in the acquisition and maintenance of a pluripotent state. Here, we show that, contrary to the pluripotency factors studied so far, overexpression of Mybl2 inhibits somatic reprogramming. Our results demonstrate that Mybl2 levels are crucial to the dynamics of the reprogramming process. Mybl2 overexpression changes chromatin conformation, affecting the accessibility of pioneer factors to the chromatin and promoting accessibility for early immediate response genes known to be reprogramming blockers. These changes in the chromatin landscape ultimately lead to a deregulation of key genes that are important for the mesenchymal-to-epithelial transition. This work defines Mybl2 level as a gatekeeper for the initiation of reprogramming, providing further insights into the tight regulation and required coordination of molecular events that are necessary for changes in cell fate identity during the reprogramming process.


Subject(s)
Cell Cycle Proteins/genetics , Trans-Activators/genetics , Cellular Reprogramming , Epithelial-Mesenchymal Transition , Humans , Transfection
16.
Blood Adv ; 2(3): 271-284, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29431622

ABSTRACT

Acute myeloid leukemia (AML) is a heterogeneous disease caused by recurrent mutations in the transcription regulatory machinery, resulting in abnormal growth and a block in differentiation. One type of recurrent mutations affects RUNX1, which is subject to mutations and translocations, the latter giving rise to fusion proteins with aberrant transcriptional activities. We recently compared the mechanism by which the products of the t(8;21) and the t(3;21) translocation RUNX1-ETO and RUNX1-EVI1 reprogram the epigenome. We demonstrated that a main component of the block in differentiation in both types of AML is direct repression of the gene encoding the myeloid regulator C/EBPα by both fusion proteins. Here, we examined at the global level whether C/EBPα is able to reverse aberrant chromatin programming in t(8;21) and t(3;21) AML. C/EBPα overexpression does not change oncoprotein expression or globally displace these proteins from their binding sites. Instead, it upregulates a core set of common target genes important for myeloid differentiation and represses genes regulating leukemia maintenance. This study, therefore, identifies common CEBPA-regulated pathways as targets for therapeutic intervention.


Subject(s)
CCAAT-Enhancer-Binding Proteins/metabolism , Cellular Reprogramming , Epigenesis, Genetic , Leukemia, Myeloid, Acute/genetics , Transcription Factors , CCAAT-Enhancer-Binding Proteins/genetics , Cell Differentiation/genetics , Cells, Cultured , Gene Expression Regulation, Leukemic , HEK293 Cells , Humans , Leukemia, Myeloid, Acute/pathology , Mutation
17.
Blood ; 130(10): 1213-1222, 2017 09 07.
Article in English | MEDLINE | ID: mdl-28710059

ABSTRACT

Understanding and blocking the self-renewal pathway of preleukemia stem cells could prevent acute myeloid leukemia (AML) relapse. In this study, we show that increased FOXO1 represents a critical mechanism driving aberrant self-renewal in preleukemic cells expressing the t(8;21)-associated oncogene AML1-ETO (AE). Although generally considered as a tumor suppressor, FOXO1 is consistently upregulated in t(8;21) AML. Expression of FOXO1 in human CD34+ cells promotes a preleukemic state with enhanced self-renewal and dysregulated differentiation. The DNA binding domain of FOXO1 is essential for these functions. FOXO1 activates a stem cell molecular signature that is also present in AE preleukemia cells and preserved in t(8;21) patient samples. Genome-wide binding studies show that AE and FOXO1 share the majority of their binding sites, whereby FOXO1 binds to multiple crucial self-renewal genes and is required for their activation. In agreement with this observation, genetic and pharmacological ablation of FOXO1 inhibited the long-term proliferation and clonogenicity of AE cells and t(8;21) AML cell lines. Targeting of FOXO1 therefore provides a potential therapeutic strategy for elimination of stem cells at both preleukemic and leukemic stages.


Subject(s)
Core Binding Factor Alpha 2 Subunit/metabolism , Forkhead Box Protein O1/metabolism , Gene Regulatory Networks , Leukemia, Myeloid, Acute/genetics , Oncogene Proteins, Fusion/metabolism , Precancerous Conditions/genetics , Animals , Antigens, CD34/metabolism , Cell Line, Tumor , Cell Proliferation , Core Binding Factor Alpha 2 Subunit/genetics , Gene Expression Profiling , Gene Expression Regulation, Leukemic , Genome, Human , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myeloid, Acute/pathology , Mice, SCID , Oncogene Proteins, Fusion/genetics , Precancerous Conditions/pathology , RUNX1 Translocation Partner 1 Protein , Up-Regulation/genetics
18.
Cell Rep ; 19(8): 1654-1668, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28538183

ABSTRACT

Acute myeloid leukemia (AML) is a heterogeneous disease caused by mutations in transcriptional regulator genes, but how different mutant regulators shape the chromatin landscape is unclear. Here, we compared the transcriptional networks of two types of AML with chromosomal translocations of the RUNX1 locus that fuse the RUNX1 DNA-binding domain to different regulators, the t(8;21) expressing RUNX1-ETO and the t(3;21) expressing RUNX1-EVI1. Despite containing the same DNA-binding domain, the two fusion proteins display distinct binding patterns, show differences in gene expression and chromatin landscape, and are dependent on different transcription factors. RUNX1-EVI1 directs a stem cell-like transcriptional network reliant on GATA2, whereas that of RUNX1-ETO-expressing cells is more mature and depends on RUNX1. However, both types of AML are dependent on the continuous expression of the fusion proteins. Our data provide a molecular explanation for the differences in clinical prognosis for these types of AML.


Subject(s)
Chromatin/metabolism , Chromosomes, Human/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Leukemia, Myeloid, Acute/genetics , Translocation, Genetic/genetics , Base Sequence , Binding Sites , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Cell Differentiation/genetics , Cell Survival/genetics , GATA2 Transcription Factor/metabolism , Gene Knockdown Techniques , Humans , Phenotype
19.
Cancer Cell ; 30(5): 737-749, 2016 Nov 14.
Article in English | MEDLINE | ID: mdl-27846391

ABSTRACT

The t(4;11)(q21;q23) fuses mixed-lineage leukemia (MLL) to AF4, the most common MLL-fusion partner. Here we show that MLL fused to murine Af4, highly conserved with human AF4, produces high-titer retrovirus permitting efficient transduction of human CD34+ cells, thereby generating a model of t(4;11) pro-B acute lymphoblastic leukemia (ALL) that fully recapitulates the immunophenotypic and molecular aspects of the disease. MLL-Af4 induces a B ALL distinct from MLL-AF9 through differential genomic target binding of the fusion proteins leading to specific gene expression patterns. MLL-Af4 cells can assume a myeloid state under environmental pressure but retain lymphoid-lineage potential. Such incongruity was also observed in t(4;11) patients in whom leukemia evaded CD19-directed therapy by undergoing myeloid-lineage switch. Our model provides a valuable tool to unravel the pathogenesis of MLL-AF4 leukemogenesis.


Subject(s)
Antigens, CD34/metabolism , Cell Transformation, Neoplastic/genetics , Histone-Lysine N-Methyltransferase/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Translocation, Genetic , Animals , Cell Lineage , Disease Models, Animal , Drug Resistance, Neoplasm , Humans , Mice , Myeloid-Lymphoid Leukemia Protein/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism
20.
Cell Rep ; 12(5): 821-36, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26212328

ABSTRACT

Acute myeloid leukemia (AML) is characterized by recurrent mutations that affect the epigenetic regulatory machinery and signaling molecules, leading to a block in hematopoietic differentiation. Constitutive signaling from mutated growth factor receptors is a major driver of leukemic growth, but how aberrant signaling affects the epigenome in AML is less understood. Furthermore, AML cells undergo extensive clonal evolution, and the mutations in signaling genes are often secondary events. To elucidate how chronic growth factor signaling alters the transcriptional network in AML, we performed a system-wide multi-omics study of primary cells from patients suffering from AML with internal tandem duplications in the FLT3 transmembrane domain (FLT3-ITD). This strategy revealed cooperation between the MAP kinase (MAPK) inducible transcription factor AP-1 and RUNX1 as a major driver of a common, FLT3-ITD-specific gene expression and chromatin signature, demonstrating a major impact of MAPK signaling pathways in shaping the epigenome of FLT3-ITD AML.


Subject(s)
Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute/enzymology , MAP Kinase Signaling System , Mutation , fms-Like Tyrosine Kinase 3/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Male , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Protein Structure, Tertiary , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , fms-Like Tyrosine Kinase 3/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...