Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 201
Filter
1.
Curr Microbiol ; 81(11): 368, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39305346

ABSTRACT

In the present study, using genome mining, Streptomyces sp. JL1001, which possesses a leinamycin-type gene cluster, was identified from 14 strains of Streptomyces originating from the rhizosphere soil of Polygonatum cyrtonema Hua. The complete genome of Streptomyces sp. JL1001 was sequenced and analyzed. The genome of Streptomyces sp. JL1001 consists of a 7,943,495 bp chromosome with a 71.71% G+C content and 7315 protein-coding genes. We also identified 36 biosynthetic gene clusters (BGCs) for secondary metabolites in Streptomyces sp. JL1001. Twenty-seven BGCs had low (< 50%) or moderate (50-80%) similarity to other known secondary metabolite BGCs. In addition, a comparative analysis was conducted between the leinamycin-type gene cluster in Streptomyces sp. JL1001 and the biosynthetic gene clusters of leinamycin and largimycin. This study aims to provide a comprehensive analysis of the genomic features of rhizosphere Streptomyces sp. JL1001. It establishes the foundation for further investigation into experimental trials involving novel bioactive metabolites such as AT-less type I polyketides that have important potential applications in medicine and agriculture.


Subject(s)
Genome, Bacterial , Multigene Family , Polygonatum , Rhizosphere , Soil Microbiology , Streptomyces , Streptomyces/genetics , Streptomyces/classification , Streptomyces/metabolism , Streptomyces/isolation & purification , Polygonatum/genetics , Polygonatum/microbiology , Base Composition , Secondary Metabolism , Phylogeny , Genomics
2.
Molecules ; 29(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39124856

ABSTRACT

A talented endophytic Streptomyces sp. PH9030 is derived from the medicinal plant Kadsura coccinea (Lem.) A.C. Smith. The undescribed naphthoquinone naphthgeranine G (5) and seven previously identified compounds, 6-12, were obtained from Streptomyces sp. PH9030. The structure of 5 was identified by comprehensive examination of its HRESIMS, 1D NMR, 2D NMR and ECD data. The inhibitory activities of all the compounds toward α-glucosidase and their antibacterial properties were investigated. The α-glucosidase inhibitory activities of 5, 6, 7 and 9 were reported for the first time, with IC50 values ranging from 66.4 ± 6.7 to 185.9 ± 0.2 µM, as compared with acarbose (IC50 = 671.5 ± 0.2 µM). The molecular docking and molecular dynamics analysis of 5 with α-glucosidase further indicated that it may have a good binding ability with α-glucosidase. Both 9 and 12 exhibited moderate antibacterial activity against methicillin-resistant Staphylococcus aureus, with minimum inhibitory concentration (MIC) values of 16 µg/mL. These results indicate that 5, together with the naphthoquinone scaffold, has the potential to be further developed as a possible inhibitor of α-glucosidase.


Subject(s)
Anti-Bacterial Agents , Glycoside Hydrolase Inhibitors , Molecular Docking Simulation , Naphthoquinones , Phenazines , Streptomyces , alpha-Glucosidases , Streptomyces/chemistry , Naphthoquinones/chemistry , Naphthoquinones/pharmacology , Naphthoquinones/isolation & purification , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Phenazines/chemistry , Phenazines/pharmacology , Phenazines/isolation & purification , Microbial Sensitivity Tests , Endophytes/chemistry , Molecular Structure , Molecular Dynamics Simulation , Methicillin-Resistant Staphylococcus aureus/drug effects
3.
Quant Imaging Med Surg ; 14(8): 6048-6059, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39144003

ABSTRACT

Background: Noninvasively detecting epidermal growth factor receptor (EGFR) mutation status in lung adenocarcinoma patients before targeted therapy remains a challenge. This study aimed to develop a 3-dimensional (3D) convolutional neural network (CNN)-based deep learning model to predict EGFR mutation status using computed tomography (CT) images. Methods: We retrospectively collected 660 patients from 2 large medical centers. The patients were divided into training (n=528) and external test (n=132) sets according to hospital source. The CNN model was trained in a supervised end-to-end manner, and its performance was evaluated using an external test set. To compare the performance of the CNN model, we constructed 1 clinical and 3 radiomics models. Furthermore, we constructed a comprehensive model combining the highest-performing radiomics and CNN models. The receiver operating characteristic (ROC) curves were used as primary measures of performance for each model. Delong test was used to compare performance differences between different models. Results: Compared with the clinical [training set, area under the curve (AUC) =69.6%, 95% confidence interval (CI), 0.661-0.732; test set, AUC =68.4%, 95% CI, 0.609-0.752] and the highest-performing radiomics models (training set, AUC =84.3%, 95% CI, 0.812-0.873; test set, AUC =72.4%, 95% CI, 0.653-0.794) models, the CNN model (training set, AUC =94.3%, 95% CI, 0.920-0.961; test set, AUC =94.7%, 95% CI, 0.894-0.978) had significantly better predictive performance for predicting EGFR mutation status. In addition, compared with the comprehensive model (training set, AUC =95.7%, 95% CI, 0.942-0.971; test set, AUC =87.4%, 95% CI, 0.820-0.924), the CNN model had better stability. Conclusions: The CNN model has excellent performance in non-invasively predicting EGFR mutation status in patients with lung adenocarcinoma and is expected to become an auxiliary tool for clinicians.

4.
Front Cardiovasc Med ; 11: 1398635, 2024.
Article in English | MEDLINE | ID: mdl-39070553

ABSTRACT

Introduction: Stress dynamic computed tomography myocardial perfusion imaging (CT-MPI) is an accurate quantitative method for diagnosing myocardial ischemia in coronary artery disease (CAD). However, its clinical application has been limited, partly due to the varied cutoff values for absolute myocardial blood flow (MBFa) and the uncertain value of the relative myocardial blood flow ratio (MBF-ratio). This study aimed to compare the diagnostic efficacy of and investigate the optimal cutoff values for MBFa and the MBF-ratio in CT-MPI for diagnosing myocardial ischemia in patients with hemodynamically significant CAD. Methods: Patients with suspected or known hemodynamically significant CAD who underwent CT-MPI + CT angiography and invasive coronary angiography (ICA)/fractional flow reserve (FFR) between October 2020 and December 2023 were retrospectively evaluated. ICA ≥80% or FFR ≤0.8 were set as the diagnostic standards for functional ischemia. The patients and vessels were categorized into ischemic and non-ischemic groups, and differences in MBFa and the MBF-ratio were compared between the groups. The area under the curve (AUC) and optimal cutoff values were calculated. Diagnostic efficacy parameters, such as sensitivity, specificity, and accuracy, were also compared. In addition, a consistency test was performed. Results: A total of 46 patients (mean age: 65.37 ± 8.25 years; 120 vessels) were evaluated. Hemodynamically significant stenosis was detected in 30/46 patients (48%) and 81/120 vessels (67.5%). The MBFa and MBF-ratio values were significantly lower in the ischemic than in the non-ischemic group; in the per-vessel analysis, the MBFa values were 73 vs. 128 (P < 0.001) and the MBF-ratio values were 0.781 vs. 0.856 (P < 0.001), respectively. The optimal cutoff values for MBFa and the MBF-ratio were 117.71 and 0.67, respectively. MBFa demonstrated a sensitivity, specificity, accuracy, AUC, positive predictive value, negative predictive value, and kappa value of 97.44%, 74.07%, 81.66%, 0.936 [95% confidence interval (CI): 0.876-0.973, P < 0.001], 63.33%, 98.36%, and 0.631 (95% CI: 0.500-0.762), respectively. The corresponding values for the MBF-ratio were 92.31%, 85.19%, 87.5%, 0.962 (95% CI: 0.911-0.989, P < 0.001), 75%, 95.83%, and 0.731 (95% CI: 0.606-0.857, P < 0.001), with no significant difference (P = 0.1225). Conclusion: Both MBFa and the MBF-ratio exhibit excellent diagnostic performance for myocardial ischemia in patients with hemodynamically significant CAD. The MBF-ratio is more robust than MBFa for interpreting CT-MPI findings in clinical practice, which is useful for radiologists and clinicians implementing CT-MPI.

5.
Sci Rep ; 14(1): 16344, 2024 07 16.
Article in English | MEDLINE | ID: mdl-39013956

ABSTRACT

To explore the diagnostic efficacy of tomosynthesis spot compression (TSC) compared with conventional spot compression (CSC) for ambiguous findings on full-field digital mammography (FFDM). In this retrospective study, 122 patients (including 108 patients with dense breasts) with ambiguous FFDM findings were imaged with both CSC and TSC. Two radiologists independently reviewed the images and evaluated lesions using the Breast Imaging Reporting and Data System. Pathology or at least a 1-year follow-up imaging was used as the reference standard. Diagnostic efficacies of CSC and TSC were compared, including area under the curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). The mean glandular dose was recorded and compared for TSC and CSC. Of the 122 patients, 63 had benign lesions and 59 had malignant lesions. For Reader 1, the following diagnostic efficacies of TSC were significantly higher than those of CSC: AUC (0.988 vs. 0.906, P = 0.001), accuracy (93.4% vs. 77.8%, P = 0.001), specificity (87.3% vs. 63.5%, P = 0.002), PPV (88.1% vs. 70.5%, P = 0.010), and NPV (100% vs. 90.9%, P = 0.029). For Reader 2, TSC showed higher AUC (0.949 vs. 0.909, P = 0.011) and accuracy (83.6% vs. 71.3%, P = 0.022) than CSC. The mean glandular dose of TSC was higher than that of CSC (1.85 ± 0.53 vs. 1.47 ± 0.58 mGy, P < 0.001) but remained within the safety limit. TSC provides better diagnostic efficacy with a slightly higher but tolerable radiation dose than CSC. Therefore, TSC may be a candidate modality for patients with ambiguous findings on FFDM.


Subject(s)
Breast Neoplasms , Mammography , Humans , Mammography/methods , Female , Middle Aged , Breast Neoplasms/diagnostic imaging , Retrospective Studies , Aged , Adult , Sensitivity and Specificity , Breast/diagnostic imaging , Breast/pathology
6.
ACS Sens ; 9(8): 4007-4016, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39078621

ABSTRACT

Achieving selective detection of ppb-level CO is important for air quality testing at industrial sites to ensure personal safety. Noble metal doping enhances charge transfer, which in turn reduces the detection limit of metal oxide gas sensors. In this work, metal-organic framework-derived Au-doped In2O3 nanotubes with high electrical conductivity are synthesized by pyrolysis of the Au-doped metal-organic framework (In-MIL-68) as a template. Gas-sensing experiments reveal that the detection limit of 0.2% Au-doped In2O3 nanotubes (0.2% Au, mass fraction) is as low as 750 ppb. Meanwhile, the sensing material shows a response value of 18.2 to 50 ppm of CO at 240 °C, which is about 2.8 times higher than that of pure In2O3. Meanwhile, the response and recovery times are short (37 s/86 s). The gas-sensing mechanism of CO is uncovered by in situ DRIFTS through the reaction intermediates. In addition, first-principles calculations suggest that Au doping of In2O3 significantly enhances its adsorption energy for CO and improves the electron transfer properties. This study reveals a novel synthesis pathway for Au-doped In2O3 nanotubular structures and their potential application in low concentration CO detection.


Subject(s)
Carbon Monoxide , Gold , Indium , Metal-Organic Frameworks , Nanotubes , Gold/chemistry , Metal-Organic Frameworks/chemistry , Nanotubes/chemistry , Indium/chemistry , Carbon Monoxide/analysis , Limit of Detection
7.
J Pharm Biomed Anal ; 247: 116256, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38850847

ABSTRACT

A long-term stability study using high performance liquid chromatography (HPLC) revealed an unidentified impurity in the bromhexine hydrochloride injection, which was employed as a mucolytic agent. Investigations into stress degradation and elemental impurities revealed one of the elemental impurities Fe3+ in this injection as the primary generator of these impurities. This impurity, named N-carboxymethyl bromhexine, was a product formed during drug-excipient interaction between bromhexine and tartaric acid with Fe3+. The structure of the impurity was identified through ultra-high-performance liquid chromatography with diode array detector (UHPLC-DAD), liquid chromatograph mass spectrometer (LC-MS). Further, the formation mechanism of the impurity was discussed. Overall, this study elucidates the cause, origin, and mechanism of an unknown impurity in bromhexine hydrochloride injection, providing a basis for quality control for bromhexine hydrochloride injections and drug products containing both amine and tartaric acid.


Subject(s)
Bromhexine , Drug Contamination , Excipients , Bromhexine/chemistry , Bromhexine/analysis , Chromatography, High Pressure Liquid/methods , Excipients/chemistry , Excipients/analysis , Tartrates/chemistry , Tartrates/analysis , Mass Spectrometry/methods , Drug Stability , Quality Control
8.
Molecules ; 29(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38675588

ABSTRACT

Two α-pyrone analogs were isolated from the endophytic fungus Diaporthe sp. CB10100, which is derived from the medicinal plant Sinomenium acutum. These analogs included a new compound, diaporpyrone F (3), and a known compound, diaporpyrone D (4). The structure of 3 was identified by a comprehensive examination of HRESIMS, 1D and 2D NMR spectroscopic data. Bioinformatics analysis revealed that biosynthetic gene clusters for α-pyrone analogs are common in fungi of Diaporthe species. The in vitro α-glucosidase inhibitory activity and antibacterial assay of 4 revealed that it has a 46.40% inhibitory effect on α-glucosidase at 800 µM, while no antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), Mycolicibacterium (Mycobacterium) smegmatis or Klebsiella pneumoniae at 64 µg/mL. Molecular docking and molecular dynamics simulations of 4 with α-glucosidase further suggested that the compounds are potential α-glucosidase inhibitors. Therefore, α-pyrone analogs can be used as lead compounds for α-glucosidase inhibitors in more in-depth studies.


Subject(s)
Ascomycota , Glycoside Hydrolase Inhibitors , Molecular Docking Simulation , Molecular Dynamics Simulation , Pyrones , alpha-Glucosidases , Pyrones/chemistry , Pyrones/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/isolation & purification , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Ascomycota/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Molecular Structure , Microbial Sensitivity Tests
9.
Free Radic Biol Med ; 215: 64-76, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38437927

ABSTRACT

BACKGROUND: Sepsis-induced cardiomyopathy (SICM) is common complication in septic patients with a high mortality and is characterized by an abnormal inflammation response, which was precisely regulated by endogenous specialized pro-resolving mediators (SPMs). However, the metabolic changes of cardiac SPMs during SICM and the roles of SPMs subset in the development of SICM remain unknown. METHODS: In this work, the SPMs concentration was assessed using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) of SICM mice and SICM patients. The cardiac function was measured by echocardiography after the treatment of a SPMs subset, termed Resolvin D2 (RvD2). Caspase-11-/-, GSDMD-/- and double deficient (Caspase-11-/-GSDMD-/-) mice were used to clarify the mechanisms of RvD2 in SICM. RESULTS: We found that endogenous cardiac SPMs were disorders and RvD2 was decreased significantly and correlated with left ventricular ejection fraction (LVEF) and ß-BNP, cTnT in Lipopolysaccharide/Cecum ligation and puncture (CLP) induced SICM models. Treatment with RvD2 attenuated lethality, cardiac dysfunction and cardiomyocytes death during SICM. Mechanistically, RvD2 alleviated SICM via inhibiting Caspase-11/GSDMD-mediated cardiomyocytes pyroptosis. Finally, the plasma levels of RvD2 were also decreased and significantly correlated with IL-1ß, ß-BNP, cTnT and LVEF in patients with SICM. Of note, plasma RvD2 level is indicator of SICM patients from healthy controls or sepsis patients. CONCLUSION: These findings suggest that decreased cardiac RvD2 may involve in the pathogenesis of SICM. In addition, treatment with RvD2 represents a novel therapeutic strategy for SICM by inhibiting cardiomyocytes pyroptosis.


Subject(s)
Cardiomyopathies , Docosahexaenoic Acids , Sepsis , Humans , Mice , Animals , Pyroptosis , Chromatography, Liquid , Stroke Volume , Tandem Mass Spectrometry , Ventricular Function, Left , Cardiomyopathies/etiology , Cardiomyopathies/genetics , Sepsis/complications , Sepsis/drug therapy , Sepsis/genetics , Gasdermins , Phosphate-Binding Proteins/genetics
10.
Microbiol Res ; 283: 127696, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518453

ABSTRACT

Boreal forests commonly suffer from nutrient deficiency due to restricted biological activity and decomposition. Biochar has been used as a promising strategy to improve soil quality, yet its impacts on forest soil microbes, particularly in cold environment, remains poorly understood. In this study, we investigated the effects of biochar, produced at different pyrolysis temperatures (500 °C and 650 °C) and applied at different amounts (0.5 kg·m-2 and 1.0 kg·m-2), on soil property, soil enzyme activity, and fungal community dynamics in a boreal forest over a span of two to four years. Our results showed that, four-year post-application of biochar produced at 650 °C and applied at 1.0 kg·m-2, significantly increased the relative abundance of Mortierellomycota and enhanced fungal species richness, α-diversity and evenness compared to the control (CK) (P < 0.05). Notably, the abundance of Phialocephala fortinii increased with the application of biochar produced at 500 °C and applied at 0.5 kg·m-2, exhibiting a positively correlation with the carbon cycling-related enzyme ß-cellobiosidase. Functionally, distinct fungal gene structures were formed between different biochar pyrolysis temperatures, and between application amounts in four-year post-biochar application (P < 0.05). Additionally, correlation analyses revealed the significance of the duration post-biochar application on the soil properties, soil extracellular enzymes, soil fungal dominant phyla, fungal community and gene structures (P < 0.01). The interaction between biochar pyrolysis temperature and application amount significantly influenced fungal α-diversity (P < 0.01). Overall, these findings provide theoretical insights and practical application for biochar as soil amendment in boreal forest ecosystems.


Subject(s)
Charcoal , Mycobiome , Resilience, Psychological , Soil/chemistry , Taiga , Ecosystem , Soil Microbiology
11.
Inorg Chem ; 63(12): 5611-5622, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38477101

ABSTRACT

The significant threat posed by the high toxicity of heavy metals and antibiotics in water pollutants has prompted a growing emphasis on the development of highly efficient removal methods for these pollutants. In this paper, flexible electrospinning polyacrylonitrile (PAN) nanofiber-supported CdBi2S4 was synthesized via a hydrothermal method, followed by amination treatment with diethylenetriamine (DETA). The as-prepared CdBi2S4/NH2-PAN nanofiber, enriched with sulfur vacancies, demonstrated outstanding visible-light trapping ability and a suitable band gap, leading to efficient separation and transport of photogenerated carriers, ultimately resulting in exceptional photocatalytic capability. The optimal 3-CdBi2S4/NH2-PAN nanofiber achieved impressive reduction rates of 92.26% for Cr(VI) and 96.45% for tetracycline hydrochloride (TCH) within 120 min, which were much higher than those for CdS/NH2-PAN, Bi2S3/NH2-PAN, and CdBi2S4/PAN nanofibers. After five cycles, the removal rate of the CdBi2S4/NH2-PAN nanofiber consistently remained above 90%. Their ease of separation and recovery from the application environment contributes to their practicality. Additionally, compared with conventional suspended particle catalyzers, the composite nanofiber exhibited remarkable flexibility and self-supporting properties.

12.
Curr Med Imaging ; 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38415485

ABSTRACT

OBJECTIVE: This study aims to comprehensively assess the characteristics of patent foramen ovale (PFO) in relation to Cryptogenic Strok (CS) by utilizing transesophageal echocardiography (TEE) and contrast transthoracic echocardiography (c-TTE) and to identify high-risk factors associated with PFO-related CS. BACKGROUND: Transcatheter PFO closure has demonstrated its effectiveness in preventing PFO-related CS. Therefore, understanding the specific structural attributes of PFO associated with CS is imperative. METHODS: Enrollment comprised 113 test patients who experienced CS in conjunction with PFO and 117 control patients diagnosed with migraine with PFO but without a history of stroke. The characteristics of the PFO were observed by TEE and c-TTE. A comparative analysis was undertaken to assess the variations in PFO characteristics between the test patients and controls, and to uncover the independent factors relevant to CS. RESULTS: The patients in the test group were older than the controls. Both the height and length of the PFO during Valsalva exhibited greater dimensions in the test group when contrasted with controls. Notably, the test group presented higher incidence rates of low-angle PFO (defined as an angle between the inferior vena cava (IVC) and PFO ≤ 10°) and atrial septal aneurysm (ASA) as contrasted with the control group. Right-to-left shunt (RLS) III during Valsalva demonstrated a significantly elevated occurrence within the test group as opposed to the controls. Conversely, RLS II during Valsalva exhibited a significantly higher frequency in the controls in contrast to the tests. No significant disparities were observed between the two groups with respect to RLS I during Valsalva and all grades of RLS at rest. Multivariate analysis revealed that the length of the PFO during Valsalva, the presence of ASA, RLS III during Valsalva and low-angle PFO were independent relevant factors associated with CS. CONCLUSIONS: The length of the PFO tunnel, low-angle PFO, RLS III during Valsalva and the presence of ASA were independent risk factors for CS. The combined utilization of TEE and c-TTE may prove valuable in identifying PFO patients at a heightened risk of CS and in facilitating the screening process for transcatheter PFO closure.

.

13.
Insights Imaging ; 15(1): 57, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38411722

ABSTRACT

OBJECTIVE: To investigate whether T2-weighted imaging (T2WI)-based intratumoral and peritumoral radiomics can predict extranodal extension (ENE) and prognosis in patients with resectable rectal cancer. METHODS: One hundred sixty-seven patients with resectable rectal cancer including T3T4N + cases were prospectively included. Radiomics features were extracted from intratumoral, peritumoral 3 mm, and peritumoral-mesorectal fat on T2WI images. Least absolute shrinkage and selection operator regression were used for feature selection. A radiomics signature score (Radscore) was built with logistic regression analysis. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of each Radscore. A clinical-radiomics nomogram was constructed by the most predictive radiomics signature and clinical risk factors. A prognostic model was constructed by Cox regression analysis to identify 3-year recurrence-free survival (RFS). RESULTS: Age, cT stage, and lymph node-irregular border and/or adjacent fat invasion were identified as independent clinical risk factors to construct a clinical model. The nomogram incorporating intratumoral and peritumoral 3 mm Radscore and independent clinical risk factors achieved a better AUC than the clinical model in the training (0.799 vs. 0.736) and validation cohorts (0.723 vs. 0.667). Nomogram-based ENE (hazard ratio [HR] = 2.625, 95% CI = 1.233-5.586, p = 0.012) and extramural vascular invasion (EMVI) (HR = 2.523, 95% CI = 1.247-5.106, p = 0.010) were independent risk factors for predicting 3-year RFS. The prognostic model constructed by these two indicators showed good performance for predicting 3-year RFS in the training (AUC = 0.761) and validation cohorts (AUC = 0.710). CONCLUSION: The nomogram incorporating intratumoral and peritumoral 3 mm Radscore and clinical risk factors could predict preoperative ENE. Combining nomogram-based ENE and MRI-reported EMVI may be useful in predicting 3-year RFS. CRITICAL RELEVANCE STATEMENT: A clinical-radiomics nomogram could help preoperative predict ENE, and a prognostic model constructed by the nomogram-based ENE and MRI-reported EMVI could predict 3-year RFS in patients with resectable rectal cancer. KEY POINTS: • Intratumoral and peritumoral 3 mm Radscore showed the most capability for predicting ENE. • Clinical-radiomics nomogram achieved the best predictive performance for predicting ENE. • Combining clinical-radiomics based-ENE and EMVI showed good performance for 3-year RFS.

14.
Acad Radiol ; 31(6): 2591-2600, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38290884

ABSTRACT

RATIONALE AND OBJECTIVES: This study aimed to non-invasively predict epidermal growth factor receptor (EGFR) mutation status in patients with lung adenocarcinoma using multi-phase computed tomography (CT) radiomics features. MATERIALS AND METHODS: A total of 424 patients with lung adenocarcinoma were recruited from two hospitals who underwent preoperative non-enhanced CT (NE-CT) and enhanced CT (including arterial phase CT [AP-CT], and venous phase CT [VP-CT]). Patients were divided into training (n = 297) and external validation (n = 127) cohorts according to hospital. Radiomics features were extracted from the NE-CT, AP-CT, and VP-CT images, respectively. The Wilcoxon test, correlation analysis, and simulated annealing were used for feature screening. A clinical model and eight radiomics models were established. Furthermore, a clinical-radiomics model was constructed by incorporating multi-phase CT features and clinical risk factors. Receiver operating characteristic curves were used to evaluate the predictive performance of the models. RESULTS: The predictive performance of multi-phase CT radiomics model (AUC of 0.925 [95% CI, 0.879-0.971] in the validation cohort) was higher than that of NE-CT, AP-CT, VP-CT, and clinical models (AUCs of 0.860 [95% CI,0.794-0.927], 0.792 [95% CI, 0.713-0.871], 0.753 [95% CI, 0.669-0.838], and 0.706 [95% CI, 0.620-0.791] in the validation cohort, respectively) (all P < 0.05). The predictive performance of the clinical-radiomics model (AUC of 0.927 [95% CI, 0.882-0.971] in the validation cohort) was comparable to that of multi-phase CT radiomics model (P > 0.05). CONCLUSION: Our multi-phase CT radiomics model showed good performance in identifying the EGFR mutation status in patients with lung adenocarcinoma, which may assist personalized treatment decisions.


Subject(s)
Adenocarcinoma of Lung , ErbB Receptors , Lung Neoplasms , Mutation , Tomography, X-Ray Computed , Humans , Female , Male , Tomography, X-Ray Computed/methods , Middle Aged , Lung Neoplasms/genetics , Lung Neoplasms/diagnostic imaging , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/diagnostic imaging , ErbB Receptors/genetics , Aged , Predictive Value of Tests , Adult , Retrospective Studies , Radiomics
15.
Appl Microbiol Biotechnol ; 108(1): 184, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38289384

ABSTRACT

Transaminase (TA) is a crucial biocatalyst for enantioselective production of the herbicide L-phosphinothricin (L-PPT). The use of enzymatic cascades has been shown to effectively overcome the unfavorable thermodynamic equilibrium of TA-catalyzed transamination reaction, also increasing demand for TA stability. In this work, a novel thermostable transaminase (PtTA) from Pseudomonas thermotolerans was mined and characterized. The PtTA showed a high specific activity (28.63 U/mg) towards 2-oxo-4-[(hydroxy)(methyl)phosphinoyl]butyric acid (PPO), with excellent thermostability and substrate tolerance. Two cascade systems driven by PtTA were developed for L-PPT biosynthesis, including asymmetric synthesis of L-PPT from PPO and deracemization of D, L-PPT. For the asymmetric synthesis of L-PPT from PPO, a three-enzyme cascade was constructed as a recombinant Escherichia coli (E. coli G), by co-expressing PtTA, glutamate dehydrogenase (GluDH) and D-glucose dehydrogenase (GDH). Complete conversion of 400 mM PPO was achieved using only 40 mM amino donor L-glutamate. Furthermore, by coupling D-amino acid aminotransferase (Ym DAAT) from Bacillus sp. YM-1 and PtTA, a two-transaminase cascade was developed for the one-pot deracemization of D, L-PPT. Under the highest reported substrate concentration (800 mM D, L-PPT), a 90.43% L-PPT yield was realized. The superior catalytic performance of the PtTA-driven cascade demonstrated that the thermodynamic limitation was overcome, highlighting its application prospect for L-PPT biosynthesis. KEY POINTS: • A novel thermostable transaminase was mined for L-phosphinothricin biosynthesis. • The asymmetric synthesis of L-phosphinothricin was achieved via a three-enzyme cascade. • Development of a two-transaminase cascade for D, L-phosphinothricin deracemization.


Subject(s)
Aminobutyrates , Escherichia coli , Transaminases , Transaminases/genetics , Escherichia coli/genetics , Butyric Acid , Glucose 1-Dehydrogenase , Glutamic Acid
16.
Eur Spine J ; 33(1): 216-223, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37715791

ABSTRACT

OBJECTIVES: To determine the predictive effect of Hounsfield unit (HU) values in the cervical vertebral body measured by computed tomography (CT) and T-scores measured by dual-energy X-ray absorptiometry (DXA) on Zero-P subsidence after anterior cervical discectomy and fusion (ACDF)with Zero-P. In addition, we evaluated the most reliable measurement of cervical HU values. METHODS: We reviewed 76 patients who underwent single-level Zero-P fusion for cervical spondylosis. HU values were measured on CT images according to previous studies. Univariate analysis was used to screen the influencing factors of Zero-P subsidence, and then, logistic regression was used to determine the independent risk factors. The area under the receiver operating characteristic curve (AUC) was used to evaluate the ability to predict Zero-P subsidence. RESULTS: Twelve patients (15.8%) developed Zero-P subsidence. There were significant differences between subsidence group and non-subsidence group in terms of age, axial HU value, and HU value of midsagittal, midcoronal, and midaxial (MSCD), but there were no significant differences in lowest T-score and lowest BMD. The axial HU value (OR = 0.925) and HU value of MSCD (OR = 0.892) were independent risk factors for Zero-P subsidence, and the lowest T-score was not (OR = 1.186). The AUC of predicting Zero-P subsidence was 0.798 for axial HU value, 0.861 for HU value of MSCD, and 0.656 for T-score. CONCLUSIONS: Lower cervical HU value indicates a higher risk of subsidence in patients following Zero-P fusion for single-level cervical spondylosis. HU values were better predictors of Zero-P subsidence than DXA T-scores. In addition, the measurement of HU value in the midsagittal, midcoronal, and midaxial planes of the cervical vertebral body provides an effective method for predicting Zero-P subsidence.


Subject(s)
Spinal Fusion , Spondylosis , Humans , Absorptiometry, Photon/methods , Tomography, X-Ray Computed/methods , Diskectomy , ROC Curve , Spondylosis/diagnostic imaging , Spondylosis/surgery , Retrospective Studies , Spinal Fusion/methods , Lumbar Vertebrae
17.
JCI Insight ; 9(1)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-37971881

ABSTRACT

The lymphatic vasculature is the natural pathway for the resolution of inflammation, yet the role of pulmonary lymphatic drainage function in sepsis-induced acute respiratory distress syndrome (ARDS) remains poorly characterized. In this study, indocyanine green-near infrared lymphatic living imaging was performed to examine pulmonary lymphatic drainage function in septic mouse models. We found that the pulmonary lymphatic drainage was impaired owing to the damaged lymphatic structure in sepsis-induced ARDS. Moreover, prior lymphatic defects by blocking vascular endothelial growth factor receptor-3 (VEGFR-3) worsened sepsis-induced lymphatic dysfunction and inflammation. Posttreatment with vascular endothelial growth factor-C (Cys156Ser) (VEGF-C156S), a ligand of VEGFR-3, ameliorated lymphatic drainage by rejuvenating lymphatics to reduce the pulmonary edema and promote draining of pulmonary macrophages and neutrophils to pretracheal lymph nodes. Meanwhile, VEGF-C156S posttreatment reversed sepsis-inhibited CC chemokine ligand 21 (CCL21), which colocalizes with pulmonary lymphatic vessels. Furthermore, the advantages of VEGF-C156S on the drainage of inflammatory cells and edema fluid were abolished by blocking VEGFR-3 or CCL21. These results suggest that efficient pulmonary lymphatic drainage is necessary for inflammation resolution in ARDS. Our findings offer a therapeutic approach to sepsis-induced ARDS by promoting lymphatic drainage function.


Subject(s)
Lymphatic Vessels , Respiratory Distress Syndrome , Sepsis , Mice , Animals , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor Receptor-3/metabolism , Vascular Endothelial Growth Factor A/metabolism , Ligands , Lymphatic Vessels/pathology , Inflammation/metabolism , Respiratory Distress Syndrome/pathology , Sepsis/metabolism
18.
ACS Sens ; 8(12): 4577-4586, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-37921655

ABSTRACT

In2O3 is an optimal material for sensitive detection of carbon monoxide (CO) gas due to its low resistivity and high catalytic activity. Yet, the gas response dynamics between the CO gas molecules and the surface of In2O3 is limited by its solid structure, resulting in a weak gas response value and sluggish electron transport. Herein, we report a strategy to synthesize porous In2O3/Fe2O3 core-shell nanotubes derived from In/Fe bimetallic organic frameworks. The fabricated porous In2O3/Fe2O3-4 core-shell nanotubes present outstanding gas sensitivities, including a response value 3.8 times (33.7 to 200 ppm CO at 260 °C) higher than that of monometallic-derived In2O3 (8.7), ultrashort response and recovery times (23/76 s) to 200 ppm CO, low detection limit (1 ppm), promising selectivity, and long-term stability. The enhanced sensing mechanisms are clarified by the combination of experiment and first-principles calculations, showing that the synergetic strategy of higher adsorption energy, increased electrical conductivity, higher electron transfer numbers, and larger specific surface area of porous core-shell structures promotes the surface activity and charge transfer efficiency. The present work paves a way to tune gas-sensing materials with special morphologies for the development of high-performance CO sensors.


Subject(s)
Carbon Monoxide , Nanotubes , Porosity , Adsorption , Catalysis
19.
Int J Gen Med ; 16: 5109-5118, 2023.
Article in English | MEDLINE | ID: mdl-37954652

ABSTRACT

Purpose: This study aimed to investigate clinical features and computed tomography (CT) manifestations of rifampicin primary drug-resistant pulmonary tuberculosis in Liangshan Yi Autonomous Prefecture. Patients and Methods: A total of 100 inpatients with confirmed primary rifampicin-resistant pulmonary tuberculosis were recruited from January 2020 to December 2022 at an infectious disease hospital located in the Liangshan Yi Autonomous Prefecture. Additionally, 100 inpatients with confirmed drug-susceptible pulmonary tuberculosis during the same period were matched to the rifampicin-resistant group based on gender, age, and ethnicity. The clinical characteristics of the two groups were recorded separately. Furthermore, the CT manifestations in these patients were independently analyzed by three radiologists. Results: The results showed that comorbid diabetes mellitus was more prevalent in the drug-resistant tuberculosis (DR-TB) group than in the drug-susceptible tuberculosis (DS-TB) group (9% vs 0%, p=0.0032). In terms of imaging presentation, DR-TB patients exhibited a higher frequency of calcifications (55% vs 35.00%, p=0.0068), greater median number of cavities (5 vs 2, p=0.0027), and larger maximum cavity diameter (52.08±25.55 mm vs 42.72±17.48 mm, p=0.0097). Additionally, bilateral involvement was more common in DR-TB patients at the site of the lesion (89% vs 76%, p=0.0246), with a higher prevalence in the right middle (82% vs 68%, p=0.0332), right lower (82% vs 68%, p=0.0332), left upper (91% vs 77%, p=0.0113), and left lower lobes (92% vs 66%, p<0.0001). Conversely, the involvement of only one lobe was less frequent in patients with DR-TB than in those with DS-TB (4% vs 13%, p=0.0398), whereas the involvement of all five lobes was more common (68% vs 51%, p=0.0209). Conclusion: Patients with DR-TB exhibit a higher prevalence of severe imaging manifestations, highlighting the importance of CT in the early detection and diagnosis of DR-TB.

SELECTION OF CITATIONS
SEARCH DETAIL