Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Virol Sin ; 38(5): 801-812, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37419417

ABSTRACT

Severe infections caused by multidrug-resistant Klebsiella pneumoniae (K. pneumoniae) highlight the need for new therapeutics with activity against this pathogen. Phage therapy is an alternative treatment approach for multidrug-resistant K. pneumoniae infections. Here, we report a novel bacteriophage (phage) BUCT631 that can specifically lyse capsule-type K1 K. pneumoniae. Physiological characterization revealed that phage BUCT631 could rapidly adsorb to the surface of K. pneumoniae and form an obvious halo ring, and it had relatively favorable thermal stability (4-50 â€‹°C) and pH tolerance (pH â€‹= â€‹4-12). In addition, the optimal multiplicity of infection (MOI) of phage BUCT631 was 0.01, and the burst size was approximately 303 â€‹PFU/cell. Genomic analysis showed that phage BUCT631 has double-stranded DNA (total length of 44,812 bp) with a G â€‹+ â€‹C content of 54.1%, and the genome contains 57 open reading frames (ORFs) and no virulence or antibiotic resistance related genes. Based on phylogenetic analysis, phage BUCT631 could be assigned to a new species in the genus Drulisvirus of the subfamily Slopekvirinae. In addition, phage BUCT631 could quickly inhibit the growth of K. pneumoniae within 2 â€‹h in vitro and significantly elevated the survival rate of K. pneumoniae infected Galleria mellonella larvae from 10% to 90% in vivo. These studies suggest that phage BUCT631 has promising potential for development as a safe alternative for control and treatment of multidrug-resistant K. pneumoniae infection.


Subject(s)
Bacteriophages , Klebsiella Infections , Moths , Animals , Bacteriophages/genetics , Klebsiella pneumoniae/genetics , Larva , Phylogeny , Klebsiella Infections/therapy
2.
Viruses ; 15(3)2023 03 03.
Article in English | MEDLINE | ID: mdl-36992382

ABSTRACT

Acinetobacter baumannii (A. baumannii) is one of the most common clinical pathogens and a typical multi-drug resistant (MDR) bacterium. With the increase of drug-resistant A. baumannii infections, it is urgent to find some new treatment strategies, such as phage therapy. In this paper, we described the different drug resistances of A. baumannii and some basic properties of A. baumannii phages, analyzed the interaction between phages and their hosts, and focused on A. baumannii phage therapies. Finally, we discussed the chance and challenge of phage therapy. This paper aims to provide a more comprehensive understanding of A. baumannii phages and theoretical support for the clinical application of A. baumannii phages.


Subject(s)
Acinetobacter baumannii , Bacteriophages , Anti-Bacterial Agents
3.
Microbiol Spectr ; 11(1): e0403022, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36700630

ABSTRACT

In recent years, Stenotrophomonas maltophilia (S. maltophilia) has become an important pathogen of clinically acquired infections accompanied by high pathogenicity and high mortality. Moreover, infections caused by multidrug-resistant S. maltophilia have emerged as a serious challenge in clinical practice. Bacteriophages are considered a promising alternative for the treatment of S. maltophilia infections due to their unique antibacterial mechanism and superior bactericidal ability compared with traditional antibiotic agents. Here, we reported a new phage BUCT700 that has a double-stranded DNA genome of 43,214 bp with 70% GC content. A total of 55 ORFs and no virulence or antimicrobial resistance genes were annotated in the genome of phage BUCT700. Phage BUCT700 has a broad host range (28/43) and can lyse multiple ST types of clinical S. maltophilia (21/33). Furthermore, bacteriophage BUCT700 used the Type IV fimbrial biogenesis protein PilX as an adsorption receptor. In the stability test, phage BUCT700 showed excellent thermal stability (4 to 60°C) and pH tolerance (pH = 4 to 12). Moreover, phage BUCT700 was able to maintain a high titer during long-term storage. The adsorption curve and one-step growth curve showed that phage BUCT700 could rapidly adsorb to the surface of S. maltophilia and produce a significant number of phage virions. In vivo, BUCT700 significantly increased the survival rate of S. maltophilia-infected Galleria mellonella (G. mellonella) larvae from 0% to 100% within 72 h, especially in the prophylactic model. In conclusion, these findings indicate that phage BUCT700 has promising potential for clinical application either as a prophylactic or therapeutic agent. IMPORTANCE The risk of Stenotrophomonas maltophilia infections mediated by the medical devices is exacerbated with an increase in the number of ICU patients during the Corona Virus Disease 2019 (COVID-19) epidemic. Complications caused by S. maltophilia infections could complicate the state of an illness, greatly extending the length of hospitalization and increasing the financial burden. Phage therapy might be a potential and promising alternative for clinical treatment of multidrug-resistant bacterial infections. Here, we investigated the protective effects of phage BUCT700 as prophylactic and therapeutic agents in Galleria mellonella models of infection, respectively. This study demonstrates that phage therapy can provide protection in targeting S. maltophilia-related infection, especially as prophylaxis.


Subject(s)
Bacteriophages , COVID-19 , Moths , Stenotrophomonas maltophilia , Animals , Humans , Bacteriophages/genetics , Bacteriophages/metabolism , Stenotrophomonas maltophilia/genetics , Larva/microbiology , Anti-Bacterial Agents/pharmacology
4.
Front Microbiol ; 13: 950737, 2022.
Article in English | MEDLINE | ID: mdl-36187954

ABSTRACT

Over the past decades, the spread of multi-drug-resistant Klebsiella pneumoniae (MDR-KP) is becoming a new threat and new effective therapies against this pathogen are needed. Bacteriophage (phage) therapy is considered to be a promising alternative treatment for MDR-KP infections compared with antibacterial drug usage. Here, we reported a new phage BUCT541 which can lyse MDR-KP ST23. The genome of BUCT541 is a double-stranded linear 46,100-bp long DNA molecule with 48% GC content through the Next generation sequencing (NGS) data. A total of 81 open reading frames and no virulence or antimicrobial resistance genes are annotated in the BUCT541 genome. BUCT541 was able to lyse 7 of the 30 tested MDR-KP according to the host range analysis. And the seven sensitive strains belonged to the K. pneumoniae K1-ST23. BUCT541 exhibited high thermal stability (4-70°C) and broad pH tolerance (pH 3-11) in the stability test. The in vivo results showed that BUCT541 (4 × 105 plaque-forming units (PFU)/each) significantly increased the survival rate of K. pneumoniae infected Galleria mellonella from 5.3% to 83.3% within 48 h. Moreover, in the mouse lung infection model, high doses of BUCT541 (2 × 107 PFU/each) cured 100% of BALB/c mice that were infected with K. pneumoniae. After 30 h of treatment with phage BUCT541 of the multiplicity of infection (MOI) = 10, the K. pneumoniae in the lungs of mice was lower than 104 CFU/mL, compared to the control group 109 CFU/mL. Together, these findings indicate that phage BUCT541 holds great promise as an alternative therapy with excellent stability and a wide lysis range for the treatment of MDR-KP ST23 infection.

5.
Int J Mol Sci ; 23(14)2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35887393

ABSTRACT

The spread of multidrug-resistant Klebsiella pneumoniae (MDR-KP) has become an emerging threat as a result of the overuse of antibiotics. Bacteriophage (phage) therapy is considered to be a promising alternative treatment for MDR-KP infection compared with antibiotic therapy. In this research, a lytic phage BUCT610 was isolated from hospital sewage. The assembled genome of BUCT610 was 46,774 bp in length, with a GC content of 48%. A total of 83 open reading frames (ORFs) and no virulence or antimicrobial resistance genes were annotated in the BUCT610 genome. Comparative genomics and phylogenetic analyses showed that BUCT610 was most closely linked with the Vibrio phage pYD38-A and shared 69% homology. In addition, bacteriophage BUCT610 exhibited excellent thermal stability (4-75 °C) and broad pH tolerance (pH 3-12) in the stability test. In vivo investigation results showed that BUCT610 significantly increased the survival rate of Klebsiella pneumonia-infected Galleria mellonella larvae from 13.33% to 83.33% within 72 h. In conclusion, these findings indicate that phage BUCT610 holds great promise as an alternative agent with excellent stability for the treatment of MDR-KP infection.


Subject(s)
Bacteriophages , Moths , Animals , Anti-Bacterial Agents/pharmacology , Genomics , Klebsiella pneumoniae/genetics , Larva/genetics , Moths/genetics , Phylogeny
6.
Front Microbiol ; 13: 906961, 2022.
Article in English | MEDLINE | ID: mdl-35865914

ABSTRACT

Stenotrophomonas maltophilia (S. maltophilia) is a common opportunistic pathogen that is resistant to many antibiotics. Bacteriophages are considered to be an effective alternative to antibiotics for the treatment of drug-resistant bacterial infections. In this study, we isolated and characterized a phage, BUCT603, infecting drug-resistant S. maltophilia. Genome sequencing showed BUCT603 genome was composed of 44,912 bp (32.5% G + C content) with 64 predicted open reading frames (ORFs), whereas no virulence-related genes, antibiotic-resistant genes or tRNA were identified. Whole-genome alignments showed BUCT603 shared 1% homology with other phages in the National Center for Biotechnology Information (NCBI) database, and a phylogenetic analysis indicated BUCT603 can be classified as a new member of the Siphoviridae family. Bacteriophage BUCT603 infected 10 of 15 S. maltophilia and used the TonB protein as an adsorption receptor. BUCT603 also inhibited the growth of the host bacterium within 1 h in vitro and effectively increased the survival rate of infected mice in a mouse model. These findings suggest that bacteriophage BUCT603 has potential for development as a candidate treatment of S. maltophilia infection.

7.
Microbiol Resour Announc ; 11(8): e0040622, 2022 Aug 18.
Article in English | MEDLINE | ID: mdl-35862919

ABSTRACT

Here, we report the complete genome sequence of bacteriophage BUCT660, which comprises a linear double-stranded DNA (dsDNA) genome of 272,720 bp and a G+C content of 47%. BUCT660 contains 316 open reading frames and 2 tRNA-encoding genes. The results of transmission electron microscopy (TEM) indicate that BUCT660 is a member of the family Caudooviricetes.

8.
Pathogens ; 11(6)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35745510

ABSTRACT

Klebsiella pneumoniae has been the predominant pathogen of liver abscess, but ST11-K47 carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) has rarely been studied as the causative organism. We identified an ST11-K47 CR-hvKP (HvKp-su1) from the drainage fluid of a liver abscess in a Chinese man who was diagnosed with liver abscess combined with diabetes, pneumonia, pleural infection, abdominal abscess, and splenic abscess. HvKp-su1 was non-hypermucoviscous and lacked the magA and rmpA genes and pLVPK plasmid but exhibited high virulence, with a high mortality rate (90%) to wax moth larvae (G. mellonella), similar to the hypervirulent Klebsiella pneumoniae ATCC43816 (91.67%). Whole-genome sequencing and bioinformatics analysis indicated that HvKp-su1 possesses a plasmid similar to a type of pLVPK-like plasmid (JX-CR-hvKP-2-P2), which is an uncommon plasmid in CR-hvKP. HvKp-su1 carried multiple resistance genes, including blaKPC-2. blaTEM-1, blaSHV-55, and blaCTX-M-65; hypervirulence genes such as aerobactin (iutA), salmochelin (iroEN), and yersiniabactin (ybtAEPQSTUX); and the type 3 fimbriae-encoding system (mrkACDF). Moreover, v_5377 and v_5429 (cofT, CFA/III (CS8)) located on plasmid 1 were simultaneously predicted to be virulence genes. After the long-term combination use of antibiotics, the patient successfully recovered. In summary, our study clarified the clinical and molecular characteristics of a rare ST11-K47 CR-hvKP (HvKp-su1), raising great concerns about the emergence of ST11-K47 CR-hvKP with multidrug resistance and hypervirulence, and providing insights into the control and treatment of liver abscess caused by ST11-K47 CR-hvKP.

9.
J Hazard Mater ; 430: 128414, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35149493

ABSTRACT

Coronavirus disease 2019 (COVID-19) has become a worldwide public health emergency, and the high transmission of SARS-CoV-2 variants has raised serious concerns. Efficient disinfection methods are crucial for the prevention of viral transmission. Herein, pulse power-driven cold atmospheric plasma (CAP), a novel sterilization strategy, was found to potently inactivate SARS-CoV-2-like coronavirus GX_P2V, six strains of major epidemic SARS-CoV-2 variants and even swine coronavirus PEDV and SADS-CoV within 300 s (with inhibition rate more than 99%). We identified four dominant short-lived reactive species, ONOO-, 1O2, O2- and·OH, generated in response to CAP and distinguished their roles in the inactivation of GX_P2V and SARS-CoV-2 spike protein receptor binding domain (RBD), which is responsible for recognition and binding to human angiotensin-converting enzyme 2 (hACE2). Our study provides detailed evidence of a novel surface disinfection strategy for SARS-CoV-2 and other coronaviruses.


Subject(s)
COVID-19 , Plasma Gases , Animals , COVID-19/prevention & control , Disinfection , Humans , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...