Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 51(D1): D1150-D1159, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36305818

ABSTRACT

It is a challenge to efficiently integrate and present the tremendous amounts of single-cell data generated from multiple tissues of various species. Here, we create a new database named SPEED for single-cell pan-species atlas in the light of ecology and evolution for development and diseases (freely accessible at http://8.142.154.29 or http://speedatlas.net). SPEED is an online platform with 4 data modules, 7 function modules and 2 display modules. The 'Pan' module is applied for the interactive analysis of single cell sequencing datasets from 127 species, and the 'Evo', 'Devo', and 'Diz' modules provide comprehensive analysis of single-cell atlases on 18 evolution datasets, 28 development datasets, and 85 disease datasets. The 'C2C', 'G2G' and 'S2S' modules explore intercellular communications, genetic regulatory networks, and cross-species molecular evolution. The 'sSearch', 'sMarker', 'sUp', and 'sDown' modules allow users to retrieve specific data information, obtain common marker genes for cell types, freely upload, and download single-cell datasets, respectively. Two display modules ('HOME' and 'HELP') offer easier access to the SPEED database with informative statistics and detailed guidelines. All in all, SPEED is an integrated platform for single-cell RNA sequencing (scRNA-seq) and single-cell whole-genome sequencing (scWGS) datasets to assist the deep-mining and understanding of heterogeneity among cells, tissues, and species at multi-levels, angles, and orientations, as well as provide new insights into molecular mechanisms of biological development and pathogenesis.


Subject(s)
Databases, Factual , Single-Cell Analysis , Humans , Animals , Biological Evolution , Plants/genetics , Ecology
3.
Cell Mol Biol Lett ; 27(1): 93, 2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36273122

ABSTRACT

BACKGROUND: EVA1A (Eva-1 homolog A), a novel protein involved in autophagy and apoptosis, functions as a tumor suppressor in some human primary cancers, including hepatocellular carcinoma (HCC). While it is consistently downregulated in several cancers, its involvement in hepatocarcinogenesis is still largely unknown. METHODS: We first detected the expression of EVA1A in HCC tissues and cell lines using RT‒qPCR, immunohistochemistry and western blotting and detected the expression of miR-103a-3p by RT‒qPCR. Then, bioinformatics prediction, dual-luciferase reporter gene assays and western blotting were used to screen and identify the upstream microRNA of EVA1A. After manipulating the expression of miR-103a-3p or EVA1A, wound healing, invasion, proliferation, colony formation, apoptosis, autophagy, mitosis and mitochondrial function assays, including mitochondrial membrane potential, ROS and ATP production assays, were performed to investigate the functions of miR-103a-3p targeting EVA1A in HCC cells. Apoptosis-related proteins were assessed by RT‒qPCR (TP53) or western blotting (TP53, BAX, Bcl-2 and caspase-3). Autophagy level was evaluated by observing LC3 puncta and examining the protein levels of p62, Beclin1 and LC3-II/I. RESULTS: We found that EVA1A expression was decreased while miR-103a-3p expression was increased in HCC tissues and cell lines and that their expression was inversely correlated in HCC patients. The expression of miR-103a-3p was associated with HCC tumor stage and poor prognosis. miR-103a-3p could target EVA1A through direct binding to its 3'-UTR and suppress its expression. Overexpression of miR-103a-3p significantly downregulated the expression of EVA1A, TP53 and BAX, upregulated the JAK2/STAT3 pathway and promoted HCC cell migration, invasion and proliferation, while repression of miR-103a-3p dramatically upregulated the expression of EVA1A, TP53, BAX and cleaved-caspase-3, inhibited HCC cell migration, invasion and proliferation, and caused mitochondrial dysfunction and apoptosis. Overexpression of EVA1A significantly attenuated the cancer-promoting effects of miR-103a-3p in HCC cells, while knockdown of EVA1A alleviated the mitochondrial dysfunction and apoptosis caused by miR-103a-3p inhibition. Overexpression of EVA1A did not induce significant changes in autophagy levels, nor did it affect G2/M transition or mitosis. CONCLUSION: These findings indicate that the downregulation of the tumor suppressor EVA1A by miR-103a-3p potentially acts as a key mediator in HCC progression, mainly by inhibiting apoptosis and promoting metastasis. The miR-103a/EVA1A/TP53 axis provides a new potential diagnostic and therapeutic target for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Humans , 3' Untranslated Regions , Adenosine Triphosphate , bcl-2-Associated X Protein/metabolism , Beclin-1/genetics , Beclin-1/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/physiopathology , Caspase 3/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Down-Regulation/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/physiopathology , Luciferases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Reactive Oxygen Species/metabolism
4.
Clin Transl Med ; 12(8): e886, 2022 08.
Article in English | MEDLINE | ID: mdl-35917402

ABSTRACT

BACKGROUND: The exact animal origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains obscure and understanding its host range is vital for preventing interspecies transmission. METHODS: Herein, we applied single-cell sequencing to multiple tissues of 20 species (30 data sets) and integrated them with public resources (45 data sets covering 26 species) to expand the virus receptor distribution investigation. While the binding affinity between virus and receptor is essential for viral infectivity, understanding the receptor distribution could predict the permissive organs and tissues when infection occurs. RESULTS: Based on the transcriptomic data, the expression profiles of receptor or associated entry factors for viruses capable of causing respiratory, blood, and brain diseases were described in detail. Conserved cellular connectomes and regulomes were also identified, revealing fundamental cell-cell and gene-gene cross-talks from reptiles to humans. CONCLUSIONS: Overall, our study provides a resource of the single-cell atlas of the animal kingdom which could help to identify the potential host range and tissue tropism of viruses and reveal the host-virus co-evolution.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , COVID-19/genetics , Host Specificity , Humans , Receptors, Virus/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism
5.
Nat Commun ; 13(1): 3620, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35750885

ABSTRACT

Pigs are valuable large animal models for biomedical and genetic research, but insights into the tissue- and cell-type-specific transcriptome and heterogeneity remain limited. By leveraging single-cell RNA sequencing, we generate a multiple-organ single-cell transcriptomic map containing over 200,000 pig cells from 20 tissues/organs. We comprehensively characterize the heterogeneity of cells in tissues and identify 234 cell clusters, representing 58 major cell types. In-depth integrative analysis of endothelial cells reveals a high degree of heterogeneity. We identify several functionally distinct endothelial cell phenotypes, including an endothelial to mesenchymal transition subtype in adipose tissues. Intercellular communication analysis predicts tissue- and cell type-specific crosstalk between endothelial cells and other cell types through the VEGF, PDGF, TGF-ß, and BMP pathways. Regulon analysis of single-cell transcriptome of microglia in pig and 12 other species further identifies MEF2C as an evolutionally conserved regulon in the microglia. Our work describes the landscape of single-cell transcriptomes within diverse pig organs and identifies the heterogeneity of endothelial cells and evolutionally conserved regulon in microglia.


Subject(s)
Endothelial Cells , Microglia , Animals , Microglia/metabolism , Phenotype , Regulon/genetics , Single-Cell Analysis , Swine , Transcriptome
6.
Clin Transl Med ; 12(1): e689, 2022 01.
Article in English | MEDLINE | ID: mdl-35092700

ABSTRACT

BACKGROUND: Immune cells play important roles in mediating immune response and host defense against invading pathogens. However, insights into the molecular mechanisms governing circulating immune cell diversity among multiple species are limited. METHODS: In this study, we compared the single-cell transcriptomes of immune cells from 12 species. Distinct molecular profiles were characterized for different immune cell types, including T cells, B cells, natural killer cells, monocytes, and dendritic cells. RESULTS: Our data revealed the heterogeneity and compositions of circulating immune cells among 12 different species. Additionally, we explored the conserved and divergent cellular crosstalks and genetic regulatory networks among vertebrate immune cells. Notably, the ligand and receptor pair VIM-CD44 was highly conserved among the immune cells. CONCLUSIONS: This study is the first to provide a comprehensive analysis of the cross-species single-cell transcriptome atlas for peripheral blood mononuclear cells (PBMCs). This research should advance our understanding of the cellular taxonomy and fundamental functions of PBMCs, with important implications in evolutionary biology, developmental biology, and immune system disorders.


Subject(s)
Genetic Heterogeneity , Leukocytes, Mononuclear/cytology , Single-Cell Analysis/statistics & numerical data , Animals , Cats , Columbidae/genetics , Deer/genetics , Goats/genetics , Haplorhini/genetics , Humans , Mesocricetus/genetics , Mice/genetics , Rabbits , Sequence Analysis, RNA/methods , Sequence Analysis, RNA/statistics & numerical data , Single-Cell Analysis/instrumentation , Single-Cell Analysis/methods , Species Specificity , Tigers/genetics , Wolves/genetics , Zebrafish/genetics
7.
Nucleic Acids Res ; 50(D1): D934-D942, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34634807

ABSTRACT

Viral infectious diseases are a devastating and continuing threat to human and animal health. Receptor binding is the key step for viral entry into host cells. Therefore, recognizing viral receptors is fundamental for understanding the potential tissue tropism or host range of these pathogens. The rapid advancement of single-cell RNA sequencing (scRNA-seq) technology has paved the way for studying the expression of viral receptors in different tissues of animal species at single-cell resolution, resulting in huge scRNA-seq datasets. However, effectively integrating or sharing these datasets among the research community is challenging, especially for laboratory scientists. In this study, we manually curated up-to-date datasets generated in animal scRNA-seq studies, analyzed them using a unified processing pipeline, and comprehensively annotated 107 viral receptors in 142 viruses and obtained accurate expression signatures in 2 100 962 cells from 47 animal species. Thus, the VThunter database provides a user-friendly interface for the research community to explore the expression signatures of viral receptors. VThunter offers an informative and convenient resource for scientists to better understand the interactions between viral receptors and animal viruses and to assess viral pathogenesis and transmission in species. Database URL: https://db.cngb.org/VThunter/.


Subject(s)
Databases, Factual , Genome, Viral , Host-Pathogen Interactions/genetics , Receptors, Virus/genetics , Software , Virus Diseases/genetics , Viruses/genetics , Animals , Binding Sites , Datasets as Topic , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Humans , Internet , Molecular Sequence Annotation , Protein Binding , Receptors, Virus/classification , Receptors, Virus/metabolism , Signal Transduction , Single-Cell Analysis , Virus Diseases/metabolism , Virus Diseases/transmission , Virus Diseases/virology , Viruses/classification , Viruses/metabolism , Viruses/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...